l Software Design Description

Wayne Pignone

Software Design Description

Wayne.Lib.Log
2008-02-13
Rev 1.4

This document is the property of Dresser Wayne. It
is not to be used or duplicated without the written
permission of the owner, and is not to be used in

any way inconsistent with purpose for which it was

loaned. Dresser Wayne shall not be liable for
technical or editorial errors or omissions, which may
appear in this document. It also retains the right to
make changes to this document at any time, without
notice.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 1 (30)

onessERYy

Software Design Description

Wayne Pignone

Table of Contents

0. Document information 4
0.1 Revision history 4
0.2 Purpose and scope 4
0.3 References 4

1. Introduction 5

2. Debug logging 6
2.1 Usage 6
2.2 Configuration 6

2.2.1. XML format 7
2.3 Examples 9
2.4 Special tricks 10

241. DotNetLog 11

3. Eventlogging 12
3.1 Publishing events 12
3.2 Event Subscribers 12
3.3 Event log configuration 14

4. Diagrams 15

5. Namespace Wayne.Lib.Log 16
5.1 Interfaces 17

5.1.1. Interface IEventSubscriber 17
Summary 17
Properties 17
Methods 17

5.1.2. Interface |IExternalLogWriter 17
Summary 17
Properties 17
Methods 17

5.2 Classes 17

5.2.1. Class DebugLogEntry 17
Summary 17
Properties 18
Constructors 18

5.2.2. Class DebugLogger 18
Summary 18
Example 18
Properties 19
Constructors 19
Methods 19

5.2.3. Class DeserializedLogEntry 21
Summary 21
Properties 21

5.2.4. Class EntityCategory 21
Summary 21
Properties 21
Methods 21

5.2.5. Class ErrorLogEntry 22

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc

Page 2 (30)

onessERYy

Wayne Pignone

Software Design Description

Summary 22
Fields 22
Properties 22
Constructors 22
5.2.6. Class EventLogEntry 23
Summary 23
Constructors 23
Methods 23
5.2.7. Class ExceptionLogEntry 23
Summary 23
Properties 23
Constructors 24
5.2.8. Class LogEntry 24
Summary 24
Properties 24
Constructors 24
Methods 25
5.2.9. Class LogException 25
Summary 25
Properties 25
Constructors 25
Methods 26
5.2.10. Class Logger 26
Summary 26
Properties 26
Methods 26
Events 27
5.2.11. Class LogTextWritingParameters 28
Summary 28
Properties 28
Constructors 28
5.2.12. Class StringLogObject 28
Summary 28
Constructors 28
5.3 Enumerations 29
5.3.1. Enumeration DebugLogLevel 29
Summary 29
Fields 29
5.3.2. Enumeration DefaultErrorCategory 29
Summary 29
Fields 29
5.3.3. Enumeration EntityLogKind 29
Summary 29
Fields 29
5.34. Enumeration ErrorLogSeverity 29
Summary 29
Fields 29
5.35. Enumeration LogExceptionType 30
Summary 30
Fields 30

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc

Page 3 (30)

l Software Design Description

Wayne Pignone

0. Document information

0.1 Revision history

Revision Date/Sign Change description

1.0 Roger Mansson Created

1.1 Roger Mansson Added the File path parameters.

1.2 Mattias Larsson Added debug log ‘category’, recursive ancestry
filters etc.

1.3 Roger Mansson Added event logging. Renamed in XSD:
LogConfig->LogConfigFile and LogFile-
>LogConfig.

1.4 2008-02-13 Refreshed doc.

Mattias Larsson

0.2 Purpose and scope
The purpose of this document is to describe the usage and design of the log library.

0.3 References

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 4 (30)

l Software Design Description

Wayne Pignone

1. Introduction

This document describes the functionality of the assembly Wayne.Lib.Log. It does yet only
describe debug logging so event and error logging are yet to be implemented. It is included in
the API reference though.

The logger is configured through an XML file. It specifies what should be logged and in what way.
What should be logged is evaluated by filters that can both include and exclude. The output for a
set of filters can be configured. At the moment, only text file logging is available but more logging
facilities can be added in the future.

The filters use the interface lldentifiableEntity defined in the Wayne.Lib.Common assembly. The
interface exposes the properties that are used for the filtering. Any part of an application that is
going to log something must have an llidentifiableEntity reference. It can be that the class itself
implements it but it can also be that several objects share one identifiable instance that is used
for the logging.

When the logging takes place the application will also specify a detail level. The log file
configuration can include what detail level that should be used on the items matching the filter.

Further on a Category can be specified when performing the logging.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 5 (30)

l Software Design Description

Wayne Pignone

2. Debug logging

2.1 Usage

Begin by pointing out your application’s log configuration xml-file in the start-up of the program:
Logger. Set Confi gFil e("MyLogConfig.xm");
Logger. RefreshConfi guration();

You can also hook to the OnThreadException-event to get any exception occurring in the logging
thread:
Logger. OnThr eadExcepti on += new
Event Handl er <Wayne. Li b. Event Ar gs<Wayne. Li b. Except i on<Excepti onType>>>
(Logger _OnThr eadException);

If you are intending to use a debug logger frequently in your application, it's a good design to
keep one “persistently” by creating one as a private field and using that one throughout the
program — rather than creating a new debug logger everywhere you want to log something.
In this case, you specify the persistent-flag (as ‘true’) when you ask for a debug logger:
debuglLog = Logger. Creat eDebuglLog(this, true, DebugLogLevel.Normal);

Now you can call the Add-method of your debuglLog whenever you want to log something.
The Add-method comes in different flavors:

The simplest one just takes an object to log (using the detail level given when created the debug

log.):
debuglLog. Add(" Bl ah bl ah");

The debug level can be specified:
debuglLog. Add(" Bl ah bl ah", DebuglLoglLevel . Detail ed);

To categorize the debug output an optional Category-object can be specified, with or without a
specified debug level:

debuglLog. Add(" Bl ah bl ah", "Category");

debuglLog. Add(" Bl ah bl ah", "Category", DebugLogLevel.Detail ed);

If you want to create a volatile debug logger, the using-statement is the best practice to use:
using (I DebuglLog dLog = Logger. Creat eDebuglLog(t his))

i f (dLog. Active)
dLog. Add(" Bl ah bl ah");
}

Another important thing to know is that before doing any logging, the best practice is to check
whether the log is actually active or not. If not, quite a lot of code is executed — just to realize that
nothing is logged. This is especially true when composed strings are being logged; since the
whole string must first be built up — just to be thrown away.

i f (dLog. Active)
dLog. Add("Coords: (" + x.ToString() + "," + y.ToString() + ")");

2.2 Configuration

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 6 (30)

Software Design Description
Wayne Pignone

The configuration of the logging is specified for the whole AppDomain (usually for the whole exe
file). The configuration is read when the Logger.Refresh(string logConfigFile) is called with a path
to the log configuration xml file. This should be done by some initial code in the application.

2.2.1. XML format

=) Log Configuration
c

8 o

>5

g o
— | Field Description

m LogConfigFile Root node

m LogConfig (+) LogConfig is the root node for each log hive, it consists of a set

string of filters and a set of output handlers.

m @Name bool LogName is a name that identifies the log hive, but has no actual
use at the moment.

0 @Enabled Use Enabled to turn on/off the whole log hive without having to
remove anything from the xml file. If not specified, default is true

o] Description 1 A text description of the Log config.

m Filters 1 A collection of filters that filters out what should be logged in this
file.

o] Filter * One entity filter is a pattern that should be included or excluded
from the logging in this file. The pattern matching is done
through regular expressions on all but the Detail level. It is
filtered so only loggings with detail level less than or equal to the
set detail level.

0 @EntityType string Matching the IldentifiableEntity’s entity type.

o] @EntitySubType string Matching the lldentifiableEntiry’s entity subtype.

o] @ld string Matching the Id. Note that the Id is a regular expression string
that should textually match the integer Id in the target entity.

o] @Enabled bool Enables/disables this filter. Default (when omitted) is true.

o] @DetailLevel -> Max detail level that should be logged.
(Normal|Detailed|Maximized)

m @FilterType -> Specifies if this is an inclusive or exclusive filter. (Exlude|include)

@LogAncestry- string The LogAncestryName attribute tells whether the full hierarchy of
Name the lldentifiableEntity should be put in the prefix of each debug
line.

o] Category *) A collection of specific Categories that should override the
default filtering.

m @Name string Matching the name of the category.

o] @Enabled bool Enables/disables this category filter. Default is true.

o] @DetailLevel | -> Max detail level that should be logged (see above).

m @FilterType -> Specifies if this is an inclusive or exclusive filter (see above).

0 Filter Child entity. See the Filter-node above! (Recursive)

M Filters 1 A collection of filters that filters out what should be logged in this
file.

m Outputs 1 A collection of the output handlers that this log hive should
output to.

o] Output *)

m @Type String Type of logger output to use. Only implemented so far is
‘TextFileLogWriter’ that outputs to an ordingary log file.

0 @Enabled bool Enables/disables this logger output. Default (when omitted) is
true

m Parameters 1 Parameters for the output hander. Dependent on which type that
is chosen.

---- EITHER ----
m TextFileParams | 1

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4
Page 7 (30)

Software Design Description

Wayne Fignone

m FilePath Path that the file should be written to.

Mixed element type so the tags below can be inserted into the
paths. Example
C:\Wayne\Log\FPos_<Id/>_<EntityType/>_<Date/>

O Id Id,Entity Type,EntitySubType will be inserted from each logging

EntityType identifiable entity. The date will be inserted with the format that is
EntitySubType specified. The default format is yyyyMMdd. This enables
Date month,date, hour logging.
-—-- OR----
EventLogSubscriptionParams Parmeters for event logging.

@Subscriberld The id string for the expected subscriber to the events.

@StorageType How the events should be stored between the event is issued
and it is handled by the subscriber (NoStorage, InMemory,
RestartSafe).

0 Leftovers All loggings that did not match the filters can be dumped to a log
See file if this tag exists and is enabled. The format is exactly as the
LogConfigFile/LogConfig/Outputs/ output node in the LogConfig/Outputs node.

Output
0 LeftoverEntities Same as Leftovers, but only the full entity name is logged once —
no log texts are added. This is to get a list of the unconfigured
entities.

The recursive filter mechanism is used to filter out particular entities of the same type that have
different parents. For instance, assume a complex application with several Wayne-sockets in
different modules. The internal socket logging could be impossible to be filtered out for only one
of the sockets (since they have the same IlldentifiableEntity-type and subtype and could have the
same id — but actually are different entities).

In this case, you could specify the whole “entity path” (or as much as needed) to uniquely identify
the entity.

Assuming an application with two sockets in different modules, both having the Id=1.

The application form is an llldentifiableEntity called “Application” with 1d=0, and it contains two
sub entities, called “ModuleA” and “ModuleB”; both with 1d=0. The two modules contains the two
sockets.

Just having the filter:

<Filter EntityType="Socket" FilterType="Include"/>

would give the following output in a log file.

11: 39: 53: 557 Socketl: XXXXXXXXXXXX. .

11: 39: 54: 258 Socket 1l: XXXXXXXXXXXX. ..

11:40: 01: 114 Socketl: XXXXXXXXXXXX. ..

11:40: 02: 532 Socketl: XXXXXXXXXXXX. .

which doesn't tell us who's socket it is that produced the log lines; is it the module A’s socket or
module B?

If we want all socket communications in the same log file, we could specify the LogAncestryName
attribute:

<Filter EntityType="Socket" FilterType="Include" LogAncestryNane="true"/>

This would reveal the whole “entity path” to the sockets, showing that the lines originated from
different sockets.

11: 39: 53: 557 Socket 1. Modul eAO. Appl i cation0: XXXXXXXXXXXX. . .

11: 39: 54: 258 Socket 1. Mbdul eBO. Appl i cati on0: XXXXXXXXXXXX. . .

11:40: 01: 114 Socket 1. Mbdul eAO. Appl i cation0: XXXXXXXXXXXX. . .

11:40: 02: 532 Socket 1. Modul eBO. Appl i cation0: XXXXXXXXXXXX. . .

But assume we only want to see the socket from ModuleA. Then we could put the following filter
in the configuration file:
<Filter EntityType="Modul eA" FilterType="Incl ude">

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 8 (30)

Software Design Description

Wayne Pignone

<Filter EntityType="Socket" FilterType="Include"/>
</Filter>

Or even

<Filter EntityType="Application" FilterType="Include">
<Filter EntityType="Modul eA" FilterType="Include">

<Filter EntityType="Socket" FilterType="Include"/>

</Filter>

</Filter>

To explicitly exclude all socket logging (not putting it in the leftovers) but the one from Module A,

the following filters will do:

<Filter EntityType="Mdul eA" FilterType="Incl ude">
<Filter EntityType="Socket" FilterType="Include"/>

</Filter>

<Filter EntityType="Socket" FilterType="Exclude"/>

This means, that when a socket entity wants to log, the log configuration mechanism is trying to
find a filter match with as long parent-hierarchy as possible.

In this case, the module A’s socket will match both the included and excluded filter above, but the
included has the most uniquely defined “parent path” (so the excluded will be ignored). The
module B’s socket will match only the excluded filter.

Note: If the same level of parent-hierarchy is found (bad configuration | guess), then an included
filter is stronger than an excluded. Example:

<Filter EntityType="Socket" FilterType="Included"/>

<Filter EntityType="Socket" FilterType="Exclude"/>

Here the socket logging will be included.

2.3 Examples

<?xm version="1.0" encodi ng="utf-8" ?>
<LogConfigFile xm ns="http://ww. wayne. com 2006- 05- 15/ LogConfi g. xsd" >
<LogConfi g LogNanme="FPos" Enabl ed="true">
<Filters>
<Filter EntityType="FPos" FilterType="Include"/>
</Filters>
<Qut put s>
<Qut put Type="TextFil eLogWiter">
<Par anet er s>
<Text Fi | ePar ans>
<Fi | ePat h>C: \ Wayne\ Log\ FPos. t xt </ Fi | ePat h>
</ Text Fi | ePar ans>
</ Par anet er s>
</ Qut put >
</ Qut put s>
</ LogConfi g>
</ LogConfi gFi | e>

In this example, we want all loggings from the entity type ‘FPOS’ to be written in the log file
FPOS.txt.

If we want to exclude the FPOS 2 from the logging we add an excluding filter:

<?xm version="1.0" encodi ng="utf-8" ?>
<LogConfigFile xm ns="http://ww. wayne. com 2006- 05- 15/ LogConfi g. xsd" >
<LogConfi g LogNane="FPos" Enabl ed="true">
<Filters>
<Filter EntityType="FPos" FilterType="Include"/>
<Filter EntityType="FPos" |d="2" FilterType="Exclude"/>

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 9 (30)

http://www.wayne.com/2006-05-15/LogConfig.xsd
http://www.wayne.com/2006-05-15/LogConfig.xsd

Software Design Description

Wayne Pignone

</Filters>
<Cut put s>
<Qut put Type="TextFil eLogWiter">
<Par anet er s>
<Text Fi | ePar ans>
<Fi | ePat h>C: \ Wayne\ Log\ FPos. t xt </ Fi | ePat h>
</ Text Fi | ePar ans>
</ Par anet er s>
</ Qut put >
</ Qut put s>
</ LogConfi g>
</ LogConfi gFi | e>

Here is a more complex example using two log files and regular expressions for the terminal
filters. All identifiable entities that begins with ‘“Ter’ and ends with ‘al’ will be logged in the terminal
log. The log category “TaxCalc” of the pinpad log will be maximized, but the category
“SocketComm” will be totally excluded.

<?xm version="1.0" encodi ng="utf-8" ?>
<LogConfigFile xm ns="http://ww. wayne. com 2006- 05- 15/ LogConfi g. xsd" >
<LogConfi g LogNanme="Term nal Log" Enabl ed="true">
<Filters>
<Filter 1d="1|2|3" EntityType="Ter.*al" FilterType="Include"
Enabl ed="true" Detail Level ="Detail ed"/>
<Filter Id="1" FilterType="Exclude" Enabl ed="fal se"/>
</Filters>
<Cut put s>
<Qut put Type="TextFi | eLogWiter" Enabl ed="true">
<Par anet er s>
<Text Fi | ePar ans>
<Fi | ePat h>C: \ Wayne\ Log\ Ter m nal . t xt </ Fi | ePat h>
</ Text Fi | ePar ans>
</ Par anet er s>
</ Qut put >
</ Qut put s>
</ LogConfi g>
<LogConfi g LogNane="Pi npadl og">
<Filters>
<Filter EntitySubType="" EntityType="Pinpad" FilterType="Incl ude"
Det ai | Level ="Det ai | ed" >
<Cat egory Name="TaxCal c" Detail Level =" Maxi m zed"
FilterType="Incl ude"/ >
<Cat egory Name="Socket Corm" Fi |t er Type="Excl ude"/>
</Filter>
</Filters>
<Qut put s>
<Qut put Type="TextFi |l eLogWiter">
<Par anet er s>
<Text Fi | ePar ans>
<Fi | ePat h>C: \ Wayne\ Log\ Pi npad. t xt </ Fi | ePat h>
</ Text Fi | ePar ans>
</ Par anet er s>
</ Qut put >
</ Qut put s>
</ LogConfi g>
</ LogConfi gFi | e>

2.4 Special tricks

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 10 (30)

http://www.wayne.com/2006-05-15/LogConfig.xsd

Software Design Description
Wayne Pignone

24.1. DotNetLog
There is a constant EntityType that is ‘DotNetLog’ that can be used to direct the built-in dotnet
debug log to a log file. By adding this filter to a log file, that log file will get all that is logged in the

program through the System.Diagnostics.Debug class.
<Filter EntityType="DotNetLog" FilterType="Incl ude"/>

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4
Page 11 (30)

l Software Design Description

Wayne Pignone

3. Event logqing

Event logging is performed through the same channel as the debug logging. An EventLogEntry is
created with the identifiable entity and a category and it is sent to the Logger. The logger has a
setup that identifies how the events should be handled. It uses the same schema as the Debug
log configuration, but it is a separate XML file. The event log entries are processed by Event
Subscribers. A class implements the interface IEventSubscriber and registers to the logger. After
that it will receive the events it is configured to handle.

3.1 Publishing events

The definition of the events is done in the same application where they are generated. An event is
defined by deriving from or using the EventLogEntry class. Each event has a category and a
sender, which identifies the event. It is good practice to keep the supported event categories in an
enumeration the possible event types together.

Example:
We want to notify that a link has gone down.

First we define the enumeration member that should represent this event.
enum Event LogType

{
Li nkDown

}

Then in the Link down method, we create an EventLogEntry with information about the sending
class, a descriptive text and the category.

voi d Li nkDown(obj ect sender, EventArgs e)

Event LogEntry entry = new Event LogEntry(this, "Link is down",
Event LogType. Li nkDown) ;
Logger . AddEntry(entry);

Or even better would be to derive a special EventLogEntry class that takes the EventLogType as
an argument to the constructor. By deriving subclasses from the EventLogEntry additional
information can be supplied in a structured way.

3.2 Event Subscribers

An event subscriber is a software module that can register into the Logger and receive event
notifications. What events that should be handled by each subscriber is defined in the event log
configuration file. Each subscriber is identified through the Subscriberld string that should be
unique.

Logger will publish these methods that are aimed at the event publishers:

Logger.RegisterEventSubscriber(lEventSubscriber subscriber)
Registers the event subscriber in the Logger.

Logger.UnregisterEventSubscriber(IEventSubscriber subscriber)

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 12 (30)

Software Design Description

Wayne Pignone
Unregisters the event subscriber from the logger.
Logger.EventLogHandled(LogEntry, IEventSubscriber subscriber)

This method should be called by the subscriber for each event it receives when it is handled. It is
then removed from the persistent or in-memory storage.

Example:
This class has a socket, and sends the category every time it receives an event.

partial class Cass2 : |Event Subscri ber

public string Subscriberld

{
get { return "d ass2"; }

}

public void Handl eEvent (Event LogEntry eventLogEntry)

{
/1 Send the category only. This is only an exanple !
socket . Send(event LogEntry. Enti t yCat egory);
/I Notify the | ogger that the event is handled and can be renoved from
/] The storage.
Logger . Event LogHandl ed(thi s, event LogEntry);

}

}
To begin receiving events, the object must be registered in the Logger

cl ass Owner C ass

{
C ass2 cl ass?2;
public void CreateSubscriber()
{
class2 = new Cl ass2();
/I Regi ster the subscri ber
Logger . Regi st er Event Subcri ber (cl ass2);
public voi d DestroySubscri ber ()
/1 Unregi ster the subscriber
Logger . Unr egi st er Event Subscri ber (cl ass2);
cl ass2. Di spose();
}
}

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 13 (30)

l Software Design Description

Wayne Pignone

3.3 Event log configuration

The event log is configured in the same way as the debug logging with an XML file defined by the
LogConfig schema. If event logging should be enabled in the application, a separate XML
configuration should be specified for the event logging.

Logger. Set Confi gFi | e(" MyDebugConfi guration.xm ", "M/Event LogConfiguration.xm");

The log configuration consists of a set of filters that works the same as in the debug logging. The
only difference is that an event log entry can not have any other debug level than normal, and
therefore the filter types ‘Detailed’ and ‘Maximized’ Does not have any effect on the event
logging.

In the outputs section the output type EventLogSubscription is used instead of the
TextFileLogWriter. Thus the parameters to the output should be of the type
EventLogSubscriptionParams. In these parameters, you specify which subscribers that are
subscribing on the events that match the filter. For each subscriber the storage type can be set.
That is about how the event should be handled in case the subscriber is not registered, or it does
not properly handle the events.

NoStorage — The events will only be notified to the registered event subscribers, and it is not
stored any information in case of shutdown or power failure.

Use for non-critical events like measurements or other not so important events.

InMemory — If the subscriber is not registered or the subscriber does not set the events as
handled, the events will be stored in the memory until the program closes. After that they are lost.
To be safe not to fill the memory with events there is a max limit set to how much may be stored
in memory before it starts to delete the events like a circular buffer.

RestartSafe — Each unhandled event is stored in restart-safe memory (disk or database) until it is
handled by the subscriber. Use for critical events like alarms.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 14 (30)

Software Design Description

F s = r -
| Logger E3 "| Debuglogger ,:‘1
| Static Clasz I Sealed Clasz
| i r
I
| = Properties 1| (=) Properties
: 25 DebugConfigFileMarne : string Ir w5 Entity : TidentifiableEntity
i ﬁ'? EventConfigFileMame : string I ﬁ'? EntitySubType @ string
I 25 1sclosed @ bool [25 EntityType @ string
ke o
| = Methods } 2 1d ik
: % AddEntry () ¢ void 1 f Pare.ntEntity : IldentifiableEntity
' -4 Closeq) : void ! R Persistent : ool
1 % EventLogHandled() : void I =] Methods
: % RefreshConfigl) : void 1 W Add]) : void {(+ 3 overloads)
1 9 RegisterEventsubscriber() : void [% GetDebuglevel{) : Debugloglevel (+ 1 o...
I & SetConfigFiled) : void (+ 1 overload) I & Isfictive() : bool (+ 3 overloads)
: & UnregisterEventSubscriber() : void ; ' MaxDebugloglevel() : Debugloglewvel
| = Ewents [o
- # OnThreadException @ EventHandler <Eventérgs<lo... 1 LogExceptionType &
e e B
[LogException @) IrvalidLogCanfigFile
Clasz CorruptConfigschernaFile
= Exception LoggerClosed
J Mo onfigFile
[= Properties MissingConfigFile
o Message ! string GeneralThreadException
ﬁ-" Type : LogExceptionType :
[LogEntry &
Clazs y ==
r | StringLogObject (&
= . Class
[=] Properties 7
25 DateTime @ DateTime
ﬁ'? EnkityiCategory : EnkibyCategory L 8
25 Logobject @ object
= Methods
e Wrikexml() ¢ woid
1
s 7
i
| EventLogEntry & | DebugLogEntry & DebugLoglLevel &
Class Class Enurm
4 LogEntry “+ LogEntry
J J Excluded
= Methods [zl Properties Normal
 Deseriglizel) : Deseria... 5 Loglevel : Debugloglevel Detailed
* g < % ; Maximized
[ErrorLogEntry &
Clazs y —
% EventlogEntry | ExceptionLogEntry (&
d Clasz
O Fields B | 4 ErrarLogEnry .
] = LogPrefix @ string | = Properties
= Propetties 75 Exception : Exception

j‘ Severity @ ErrarLogSeverity N

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 15 (30)

Wayne Pignone

oressen)

Software Design Description

5. Namespace Wayne.Lib.Loqg

Interfaces

IEventSubscriber

IExternalLogWriter

Classes

DebuglLogEntry
DebuglLogger

DeserializedLogEntry

EntityCategory

ErrorLogEntry
EventLogEntry
ExceptionLogEntry

LogEntry

LogException

Logger

LogTextWritingParameters

StringLogObject

Enumerations

DebugLoglLevel

DefaultErrorCategory

EntityLogKind
ErrorLogSeverity
LogExceptionType

Interface that event subscribers should implement.

Interface to an external log writer

A Debug LogEntry.
Class used to make debug logs.

An EventLog entry that has been deserialized from a serialized form.
The additional data that is supplied with the data is now only
accessible as an Xml element in the LogDataElement property.

This class wraps an lldentifiableEntity and a Category to be used as
a key in e.g. Dictionaries and Lists.

Base LogEntry for Errors.
LogEntry for Events.
Log entry for exception errors.

An generic entry to be logged containing details regarding what to
log, the datetime and who was performing the logging etc. This class
is inherited by DebugLogEntry, EventLogEntry and ErrorLogEntry
which adds on more specific properties.

General log exception.

Logger is a static class used to create log objects.

The StringLogObject-class serves as a helpclass to convert one or
more objects into one or more strings to log. Also provides format
abilities.

Describes the level of the debug information. Can be used to reduce
the size of the logs.

This is the default set up of error categories to be used when logging
ErrorLogEntries.

In detalil of the name of an identifiable entity.
Describes the severity of an error.

The different types of log exceptions.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc

2008-02-13
Rev 1.4

Page 16 (30)

l Software Design Description

Wayne Pignone

5.1 Interfaces

5.1.1. Interface IEventSubscriber

public interface | Event Subscri ber

Summary

Interface that event subscribers should implement.

Properties

Subscriberld Identifies the subscriber. This name is used in the configuration to identify the
string receiver of the events.

Methods

HandleEvent
public voi d Handl eEvent (Li b. Log. Event LogEntry event LogEntry);
Called when an event should be handled by this subscriber.

eventLogEntry

5.1.2. Interface IExternalLogWriter

public interface | External LogWiter

Summary

Interface to an external log writer

Properties

ﬁ\é:(t;lve R | Tells whether the log writer is currently active.

ExternalLogName R

string Identifies the external log writer used in the configuration.

ExternalLogType R
string

Methods

Log
public void Log(Lib.Log.LogEntry |ogEntry, string formattedText);
Called when a log entry should be handled by this external log writer.

Identifies the type of external log writer used in the configuration.

logEntry The LogEntry to log.

formattedText The LogEntry as a formatted string.

5.2 Classes

5.2.1. Class DebugLogEntry

public class DebuglLogEntry : LogEntry

Summary
A Debug LogEntry.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 17 (30)

l Software Design Description

Wayne Pignone

Properties

LogLevel R
Li b. Log. DebuglLogLeve

Constructors

The log level.

publ i c DebugLogEntry(Lib.IldentifiableEntity entity, object |ogbject);
Constructor.

entity The entity that performed the logging.
logObject The object to log.

public DebugLogEntry(Lib.lldentifiableEntity entity, object |oglject,
Li b. Log. DebugLogLevel | ogLevel);

Constructor.

entity The entity that performed the logging.
logObject The object to log.

logLevel The log level.

publ i c DebugLogEntry(Lib.IldentifiableEntity entity, object |ogCbject, object

cat egory);

Constructor.

entity The entity that performed the logging.
logObject The object to log.

category The category of the log object.

publ i c DebuglLogEntry(Lib.IldentifiableEntity entity, object |ogCbject, object
category, Lib.Log.DebugLoglLevel |ogLevel);

Constructor.

entity The entity that performed the logging.
logObject The object to log.

category The category of the log object.
logLevel The log level.

5.2.2. Class DebuglLogger

public class DebuglLogger : Object

Summary

Class used to make debug logs.

Example

This is an example of how to write a debug log entry.

usi ng (DebugLogger dLog = new DebuglLogger (this))

i f (dLog.|sActive(DebugLogLevel.Detail ed))

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 18 (30)

l Software Design Description

{
dLog. Add("This is line 1.", DebugLogLevel.Detail ed);
dLog. Add("This is line 2.", "MCategory",
DebugLogLevel . Det ai | ed) ;
}
}
Properties
Entity

Li b.11dentifiabl eEntity R | The identifiable entity that has created this debug log.

sEtnrt'i% 3ubType R The EntitySubType of the Entity.

EntityType R | The EntityType of the Entity.

string

H‘t R | The Id of the Entity.

ParentEntity ; ;

Lib. I ldentifiableEntity R | The ParentEntity of the Entity.

Eoeélsistent R | Tells whether the debug log is persistent or not.
Constructors

publ i c DebuglLogger (Lib.lldentifiableEntity entity);
Construction of non-persistent DebuglLogger.

entity

publ i ¢ DebuglLogger(Lib.lldentifiableEntity entity, bool persistent);
Construction

entity

persistent

Methods

Add
public voi d Add(object obj);
Adds a new object to the debug log entry.

obj The log object that are added.

Add
public void Add(object obj, Lib.Log.DebugLogLevel |evel);
Adds a new object to the debug log entry.

obj The log object that are added.
level TDB
Add

public void Add(object obj, object category);

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 19 (30)

l Software Design Description

Wayne Pignone

Adds a new object to the debug log entry.

obj The log object that are added.
category A specific category that this log is about.
Add

public void Add(object obj, object category, Lib.Log.DebugLogLevel Ievel);
Adds a new object to the debug log entry.

obj The log object that are added.
category A specific category that this log is about.
level TDB

Dispose
public void D spose();
Dispose.

GetDebugLevel
public Lib.Log. DebugLogLevel GCetDebuglLevel ();

Get the current debug level for the default category.

GetDebugLevel
public Lib.Log. DebugLoglLevel GetDebuglLevel (object category);
Get the current debug level for the given category.

category

IsActive
public bool IsActive();

Tells whether the default category is active in the Normal level.

IsActive
public bool |sActive(object category);
Tells whether the given category is active in the Normal level.

category
IsActive
public bool |sActive(Lib.Log.DebugLoglLevel debuglLoglLevel);

Tells whether the default category is active in the given level.

debuglLogLevel

IsActive
public bool I|sActive(object category, Lib.Log.DebugLogLevel debuglLoglLevel);
Tells whether the given category is active in the given level.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 20 (30)

Software Design Description
Wayne Pignone

category

debugLoglLevel

MaxDebugLogLevel

public Lib.Log. DebugLogLevel MaxDebuglLoglLevel (Lib. Log. DebuglLogLevel |evel 1,
Li b. Log. DebugLogLevel |evel 2);

Static method to get the highest of two DebuglLogLevel's.

levell

level2

5.2.3. Class DeserializedLogEntry

public class DeserializedLogEntry : EventLogEntry

Summary

An EventLog entry that has been deserialized from a serialized form. The additional data that is
supplied with the data is how only accessible as an Xml element in the LogDataElement property.
Properties

LogDataElement Xml element that contains the additional data that was supplied with the event
Xm . Xm El enent originally.

5.2.4. Class EntityCategory

public class EntityCategory : Object

Summary

This class wraps an lldentifiableEntity and a Category to be used as a key in e.g. Dictionaries and
Lists.

Properties

CategoryString

string R | The category.

Entity

Lib.lidentifiabl eEntity R Theenity.

LastTouched
Dat eTi e

Methods

Equals
publi ¢ bool Equal s(object obj);

Equals

R | A date time that specifies when the object was last touched.

obj

Equals
public bool Equal s(Lib.lldentifiableEntity entity, object category);
Equals

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 21 (30)

l Software Design Description

Wayne Pignone

entity

category

GetHashCode
public int GetHashCode();
GetHashCode

GetName

public string GetName(Lib.Log.EntityLogKi nd entityLogKind, bool
suppr essCat egory) ;

Get the log-name.

entityLogKind In which detail the id-entity should be presented.
suppressCategory Should the category be suppressed or not.
Touch

public void Touch();
Touch the entity category.

5.2.5. Class ErrorLogEntry

public class ErrorLogEntry : EventLogEntry

Summary
Base LogEntry for Errors.
Fields

|S_t0:g]iPrl]’gfix The keyword "**ERROR" put in the log file.

Properties

Severity R

Li b. Log. Er ror LogSeverity The severity of the error.

Constructors
public ErrorLogEntry(Lib.lldentifiableEntity entity, Lib.Log.ErrorLogSeverity

severity, object |ogbject);

Constructor.

entity

severity

logObject The object to log.

public ErrorLogEntry(Lib.lldentifiableEntity entity, Lib.Log.ErrorLogSeverity
severity, object |oghject, object category);

Constructor.

entity

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 22 (30)

l Software Design Description

Wayne Pignone

severity
logObject The object to log.

category

5.2.6. Class EventLogEntry

public class EventLogEntry : LogEntry

Summary
LogEntry for Events.
Constructors

public EventLogEntry(Lib.lldentifiableEntity entity, object |ogbject);
Constructor.

entity

logObject The object to log.

public EventLogEntry(Lib.lldentifiableEntity entity, object |ogQObject, object
category);

Constructor.

entity

logObject The object to log.

category

public EventLogEnt ry(Xm .Xm El ement | ogEntryNode);

Constructor.

logEntryNode XML node.

Methods

Deserialize
public Lib.Log.DeserializedLogEntry Deserialize(Xm .Xm El enent xmni El ement) ;
Deserializing from an XML-element.

xmlElement

5.2.7. Class ExceptionLogEntry

public class ExceptionLogEntry : ErrorLogEntry

Summary
Log entry for exception errors.
Properties
Exception R Exception information.
File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 23 (30)

Software Design Description
Wayne Pignone

Exception
Constructors
public ExceptionLogEntry(Lib.lldentifiableEntity entity, Lib.Log.ErrorLogSeverity

severity, object |oghject, Exception exception);
Constructor.

entity

severity

logObject The object to log.

exception

public ExceptionLogEntry(Lib.lldentifiableEntity entity, Lib.Log.ErrorLogSeverity
severity, object |oghject, object category, Exception exception);
Constructor.

entity

severity

logObject The object to log.
category

exception

5.2.8. Class LogEntry

public class LogEntry : bject

Summary

An generic entry to be logged containing details regarding what to log, the datetime and who was
performing the logging etc. This class is inherited by DebugLogEntry, EventLogEntry and
ErrorLogEntry which adds on more specific properties.

Properties

DateTime

Dat oTi me R | The date time of the logging.

EntityCategory

Li b. Log. Ent i t yCat egory R | The EntityCategory that performed the logging.

LogObject

obj ect R | The object to log.

Constructors

fam | yorassenbly LogEntry(Xm . Xm El enent | ogEntryNode);
Deserialization constructor.

logEntryNode

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 24 (30)

oressen)

Wayne Pignone

Software Design Description

Methods

WriteLogObjectData
protected void WiteLogObjectData(Xm . XM Witer xm Witer);

xmlWriter

WriteXml
public void WiteXm (Xml . Xm Witer xm Witer, string prefix);
Serializes this object into the specified xmIWriter.

xmIWriter

prefix

5.2.9. Class LogException

public class LogException : Exception

Summary
General log exception.
Properties

LogExceptionType R

Li b. Log. LogExcepti onType The type of exception.

Message R

string The Message

Constructors

public LogException(Lib.Log.LogExceptionType type);
Construction.

type

publ i c LogException(Lib.Log.LogExceptionType type, string nessage);
Construction.

type

message

publ i c LogException(Lib.Log. LogExcepti onType type, string nessage, Exception

i nner);
Construction.

type
message

inner

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 25 (30)

l Software Design Description

Wayne Pignone

Methods

5.2.10. Class Logger

abstract public class Logger : oject

Summary
Logger is a static class used to create log objects.
Properties

DebugConfigFileName

string R ' The current debug log configuration file.

EventConfigFileName

i R ' The current event log configuration file.
string

IsClosed
bool

Methods

AddEntry
public void AddEntry(Lib.Log. LogEntry | ogEntry);
Logs the given LogEntry.

R Tells whether someone has called the Close() method.

logEntry The LogEntry to log.

Close
public void O ose();
Closes the logger. This should be done as the last things before the application terminates.

EventLogHandled

public void Event LogHandl ed(Li b. Log. | Event Subscri ber event Subscri ber,

Li b. Log. Event LogEntry event LogEntry);

Remove an event log from the storage. This method should be called from a registered
IEventSubscriber when it has handled an event.

eventSubscriber

eventLogEntry

GetExternalLoggerParameters

publ i c bool GetExternal Logger Parameters(Lib.Log.|External LogWiter
external LogWiter, Lib.Log.LogTextWitingParanmeters@witingParaneters);
externalLogWriter

writingParameters

RefreshConfig
public void RefreshConfig();

Re-loads the configuration for the logging.

RegisterEventSubscriber
public void RegisterEvent Subscri ber(Li b. Log. | Event Subscri ber event Subscri ber);

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 26 (30)

l Software Design Description

Wayne Pignone

Register an IEventSubscriber, so it can start receiving events. The event subscriber will be sent the
pending events that has been stored since the subscriber was registered the last time.

eventSubscriber

RegisterExternalLogger
public voi d Regi sterExternal Logger (Lib. Log. | External LogWiter external LogWiter);

Register an ExternalLogWriter.

externalLogWriter The external log writer to register.

SetConfigFile

public void SetConfigFile(string debugConfigFileNane, string
event Confi gFi | eNane) ;

Reloads the configuration from the specified configuration file.

debugConfigFileName Log configuration for the debug logging.

eventConfigFileName Log configuration for the event logging.

SetConfigFile

public void SetConfigFile(string debugConfigFileNane);

Reloads the configuration from the specified configuration file for the debug logging. To activate the
event logging SetConfigFile(string,string) should be called.

debugConfigFileName Log configuration for the debug logging.

UnregisterEntity
public void UnregisterEntity(Lib.lldentifiableEntity entity);

Removes the specified entity from the internal filter buffers.

entity

UnregisterEventSubscriber
public void Unregi ster Event Subscri ber (Li b. Log. | Event Subscri ber event Subscri ber);

Unregister a registered IEventSubscriber.

eventSubscriber

UnregisterExternalLogger
public voi d Unregi sterExternal Logger (Li b. Log. | External LogWiter
external LogWiter);

Unregister an ExternalLogWriter.

externalLogWriter The external log writer to unregister.

Events

OnThreadException
publ i c Event Handl er { \\ayne. Li b. Event Ar gs{\Wayne. Li b. Log. LogExcepti on}}
OnThr eadExcept i on;

An event that is fired when the logging thread is catching an exception.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 27 (30)

l Software Design Description

Wayne Pignone

5.2.11. Class LogTextWritingParameters

public class LogTextWitingParaneters : Object
Summary
Properties

DateTimeFormat R
string

EntityLogKind
Li b. Log. Enti tyLogKi nd

SuppressCategory R
bool

Constructors

public LogText WitingParaneters(string dateTi mneFormat, Lib.Log.EntityLogKind
entityLogKi nd, bool suppressCategory);

dateTimeFormat
entityLogKind

suppressCategory

5.2.12. Class StringLogObject

public class StringLogObject : Object

Summary
The StringLogObject-class serves as a helpclass to convert one or more objects into one or more
strings to log. Also provides format abilities.

Constructors

public StringLogOhject(Object[] |oglhjects);
Constructor.

logObjects A number of objects to log.

public StringLogCbject(string format, |FormatProvider provider, Array array);

Constructor.

format A format-string to format the items of an array.
provider An IFormatProvider to format the items of an array.
array An array of objects to log.

public StringLogObject(string format, |FormatProvider provider, Object[]

| oglbj ects);
Constructor.
format A format-string to format the items of an array.
File: E:\\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 28 (30)

Software Design Description
Wayne Pignone

provider An IFormatProvider to format the items of an array.

logObjects A number of objects to log.

5.3 Enumerations

5.3.1. Enumeration DebugLogLevel

Summary

Describes the level of the debug information. Can be used to reduce the size of the logs.
Fields

Excluded Not logged.

Normal Normal debug information.

Detailed Detailed debug information.

Maximized Maximized debug information.

5.3.2. Enumeration DefaultErrorCategory

Summary

This is the default set up of error categories to be used when logging ErrorLogEntries.
Fields

Bug Whoops. Our mistake. A bug.

Configurational This error is due to a badly configured system.

Communication This error occurred as a result of some communication problems.
Peripheral Some kind of Peripheral equipment failed in some way.

The program got an unexpected result from some kind of operation. This could

UnexpectedResult for instance be a computed value that is out of the allowed range.

XmlValidation Invalid XML data.

5.3.3. Enumeration EntityLogKind

Summary
In detail of the name of an identifiable entity.
Fields

None No name.
Entity Only the identifiable entity itself (no parents).

Ancestors | The names of identifiable entitis all the way from the root entity to the current entity.

5.3.4. Enumeration ErrorLogSeverity
Summary
Describes the severity of an error.
Fields
Cosmetic The kindest type of error. The application can proceed its execution without
File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 29 (30)

Software Design Description
Wayne Pignone

any problem.

Quite a bad error has occurred. The application can however continue

Recoverable without any loss of data or similar.

This is a really bad error. Somehow some kind of data is lost -- but the

RecoverableDataloss o ; . .
application can continue its execution.

The worst imaginable errors. When this error has occurred the application
Irrecoverable cannot continue. This could for instance be a bad configuration, e.g. two
servers listening to the same port.

5.3.5. Enumeration LogExceptionType

Summary

The different types of log exceptions.

Fields

InvalidLogConfigFile The log config file has a bad format.

CorruptConfigSchemaFile ' The internal config schema file is corrupt.

LoggerClosed This operation is not allowed since the Logger is closed.
NoConfigFile There is no configuration file specified.
MissingConfigFile The specified configuration file is missing.

When an exception has occurred within the thread's execution method,

GeneralThreadException the Logger will fire an OnThreadException holding this exception.

File: E:\Projects\DotNet\Wrk\WayneLibraries\Wrk\Log\Doc\SDD_Wayne.Lib.Log.doc
2008-02-13
Rev 1.4

Page 30 (30)

