| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463 |
- // polynomi.h - originally written and placed in the public domain by Wei Dai
- /// \file polynomi.h
- /// \brief Classes for polynomial basis and operations
- #ifndef CRYPTOPP_POLYNOMI_H
- #define CRYPTOPP_POLYNOMI_H
- #include "cryptlib.h"
- #include "secblock.h"
- #include "algebra.h"
- #include "misc.h"
- #include <iosfwd>
- #include <vector>
- NAMESPACE_BEGIN(CryptoPP)
- /// represents single-variable polynomials over arbitrary rings
- /*! \nosubgrouping */
- template <class T> class PolynomialOver
- {
- public:
- /// \name ENUMS, EXCEPTIONS, and TYPEDEFS
- //@{
- /// division by zero exception
- class DivideByZero : public Exception
- {
- public:
- DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {}
- };
- /// specify the distribution for randomization functions
- class RandomizationParameter
- {
- public:
- RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter )
- : m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}
- private:
- unsigned int m_coefficientCount;
- typename T::RandomizationParameter m_coefficientParameter;
- friend class PolynomialOver<T>;
- };
- typedef T Ring;
- typedef typename T::Element CoefficientType;
- //@}
- /// \name CREATORS
- //@{
- /// creates the zero polynomial
- PolynomialOver() {}
- ///
- PolynomialOver(const Ring &ring, unsigned int count)
- : m_coefficients((size_t)count, ring.Identity()) {}
- /// copy constructor
- PolynomialOver(const PolynomialOver<Ring> &t)
- : m_coefficients(t.m_coefficients.size()) {*this = t;}
- /// construct constant polynomial
- PolynomialOver(const CoefficientType &element)
- : m_coefficients(1, element) {}
- /// construct polynomial with specified coefficients, starting from coefficient of x^0
- template <typename Iterator> PolynomialOver(Iterator begin, Iterator end)
- : m_coefficients(begin, end) {}
- /// convert from string
- PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}
- /// convert from big-endian byte array
- PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);
- /// convert from Basic Encoding Rules encoded byte array
- explicit PolynomialOver(const byte *BEREncodedPolynomialOver);
- /// convert from BER encoded byte array stored in a BufferedTransformation object
- explicit PolynomialOver(BufferedTransformation &bt);
- /// create a random PolynomialOver<T>
- PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring)
- {Randomize(rng, parameter, ring);}
- //@}
- /// \name ACCESSORS
- //@{
- /// the zero polynomial will return a degree of -1
- int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;}
- ///
- unsigned int CoefficientCount(const Ring &ring) const;
- /// return coefficient for x^i
- CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const;
- //@}
- /// \name MANIPULATORS
- //@{
- ///
- PolynomialOver<Ring>& operator=(const PolynomialOver<Ring>& t);
- ///
- void Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring);
- /// set the coefficient for x^i to value
- void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);
- ///
- void Negate(const Ring &ring);
- ///
- void swap(PolynomialOver<Ring> &t);
- //@}
- /// \name BASIC ARITHMETIC ON POLYNOMIALS
- //@{
- bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const;
- bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}
- PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Inverse(const Ring &ring) const;
- PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const;
- bool IsUnit(const Ring &ring) const;
- PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring);
- PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);
- ///
- PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);}
- ///
- PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}
- CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;
- PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring);
- PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);
- /// calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
- static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring);
- //@}
- /// \name INPUT/OUTPUT
- //@{
- std::istream& Input(std::istream &in, const Ring &ring);
- std::ostream& Output(std::ostream &out, const Ring &ring) const;
- //@}
- private:
- void FromStr(const char *str, const Ring &ring);
- std::vector<CoefficientType> m_coefficients;
- };
- /// Polynomials over a fixed ring
- /*! Having a fixed ring allows overloaded operators */
- template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T>
- {
- typedef PolynomialOver<T> B;
- typedef PolynomialOverFixedRing<T, instance> ThisType;
- public:
- typedef T Ring;
- typedef typename T::Element CoefficientType;
- typedef typename B::DivideByZero DivideByZero;
- typedef typename B::RandomizationParameter RandomizationParameter;
- /// \name CREATORS
- //@{
- /// creates the zero polynomial
- PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}
- /// copy constructor
- PolynomialOverFixedRing(const ThisType &t) : B(t) {}
- explicit PolynomialOverFixedRing(const B &t) : B(t) {}
- /// construct constant polynomial
- PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}
- /// construct polynomial with specified coefficients, starting from coefficient of x^0
- template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last)
- : B(first, last) {}
- /// convert from string
- explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}
- /// convert from big-endian byte array
- PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}
- /// convert from Basic Encoding Rules encoded byte array
- explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}
- /// convert from BER encoded byte array stored in a BufferedTransformation object
- explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}
- /// create a random PolynomialOverFixedRing
- PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter ¶meter) : B(rng, parameter, ms_fixedRing) {}
- static const ThisType &Zero();
- static const ThisType &One();
- //@}
- /// \name ACCESSORS
- //@{
- /// the zero polynomial will return a degree of -1
- int Degree() const {return B::Degree(ms_fixedRing);}
- /// degree + 1
- unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);}
- /// return coefficient for x^i
- CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
- /// return coefficient for x^i
- CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
- //@}
- /// \name MANIPULATORS
- //@{
- ///
- ThisType& operator=(const ThisType& t) {B::operator=(t); return *this;}
- ///
- ThisType& operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;}
- ///
- ThisType& operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;}
- ///
- ThisType& operator*=(const ThisType& t) {return *this = *this*t;}
- ///
- ThisType& operator/=(const ThisType& t) {return *this = *this/t;}
- ///
- ThisType& operator%=(const ThisType& t) {return *this = *this%t;}
- ///
- ThisType& operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;}
- ///
- ThisType& operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}
- /// set the coefficient for x^i to value
- void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}
- ///
- void Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter) {B::Randomize(rng, parameter, ms_fixedRing);}
- ///
- void Negate() {B::Negate(ms_fixedRing);}
- void swap(ThisType &t) {B::swap(t);}
- //@}
- /// \name UNARY OPERATORS
- //@{
- ///
- bool operator!() const {return CoefficientCount()==0;}
- ///
- ThisType operator+() const {return *this;}
- ///
- ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));}
- //@}
- /// \name BINARY OPERATORS
- //@{
- ///
- friend ThisType operator>>(ThisType a, unsigned int n) {return ThisType(a>>=n);}
- ///
- friend ThisType operator<<(ThisType a, unsigned int n) {return ThisType(a<<=n);}
- //@}
- /// \name OTHER ARITHMETIC FUNCTIONS
- //@{
- ///
- ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
- ///
- bool IsUnit() const {return B::IsUnit(ms_fixedRing);}
- ///
- ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));}
- ///
- ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}
- CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}
- /// calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
- static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d)
- {B::Divide(r, q, a, d, ms_fixedRing);}
- //@}
- /// \name INPUT/OUTPUT
- //@{
- ///
- friend std::istream& operator>>(std::istream& in, ThisType &a)
- {return a.Input(in, ms_fixedRing);}
- ///
- friend std::ostream& operator<<(std::ostream& out, const ThisType &a)
- {return a.Output(out, ms_fixedRing);}
- //@}
- private:
- struct NewOnePolynomial
- {
- ThisType * operator()() const
- {
- return new ThisType(ms_fixedRing.MultiplicativeIdentity());
- }
- };
- static const Ring ms_fixedRing;
- };
- /// Ring of polynomials over another ring
- template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> >
- {
- public:
- typedef T CoefficientRing;
- typedef PolynomialOver<T> Element;
- typedef typename Element::CoefficientType CoefficientType;
- typedef typename Element::RandomizationParameter RandomizationParameter;
- RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}
- Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter ¶meter)
- {return Element(rng, parameter, m_ring);}
- bool Equal(const Element &a, const Element &b) const
- {return a.Equals(b, m_ring);}
- const Element& Identity() const
- {return this->result = m_ring.Identity();}
- const Element& Add(const Element &a, const Element &b) const
- {return this->result = a.Plus(b, m_ring);}
- Element& Accumulate(Element &a, const Element &b) const
- {a.Accumulate(b, m_ring); return a;}
- const Element& Inverse(const Element &a) const
- {return this->result = a.Inverse(m_ring);}
- const Element& Subtract(const Element &a, const Element &b) const
- {return this->result = a.Minus(b, m_ring);}
- Element& Reduce(Element &a, const Element &b) const
- {return a.Reduce(b, m_ring);}
- const Element& Double(const Element &a) const
- {return this->result = a.Doubled(m_ring);}
- const Element& MultiplicativeIdentity() const
- {return this->result = m_ring.MultiplicativeIdentity();}
- const Element& Multiply(const Element &a, const Element &b) const
- {return this->result = a.Times(b, m_ring);}
- const Element& Square(const Element &a) const
- {return this->result = a.Squared(m_ring);}
- bool IsUnit(const Element &a) const
- {return a.IsUnit(m_ring);}
- const Element& MultiplicativeInverse(const Element &a) const
- {return this->result = a.MultiplicativeInverse(m_ring);}
- const Element& Divide(const Element &a, const Element &b) const
- {return this->result = a.DividedBy(b, m_ring);}
- const Element& Mod(const Element &a, const Element &b) const
- {return this->result = a.Modulo(b, m_ring);}
- void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
- {Element::Divide(r, q, a, d, m_ring);}
- class InterpolationFailed : public Exception
- {
- public:
- InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {}
- };
- Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
- // a faster version of Interpolate(x, y, n).EvaluateAt(position)
- CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
- /*
- void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const;
- void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const;
- CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const;
- */
- protected:
- void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
- CoefficientRing m_ring;
- };
- template <class Ring, class Element>
- void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n);
- template <class Ring, class Element>
- void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n);
- template <class Ring, class Element>
- Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);
- ///
- template <class T, int instance>
- inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Equals(b, a.ms_fixedRing);}
- ///
- template <class T, int instance>
- inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return !(a==b);}
- ///
- template <class T, int instance>
- inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() > b.Degree();}
- ///
- template <class T, int instance>
- inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() >= b.Degree();}
- ///
- template <class T, int instance>
- inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() < b.Degree();}
- ///
- template <class T, int instance>
- inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() <= b.Degree();}
- ///
- template <class T, int instance>
- inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
- ///
- template <class T, int instance>
- inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
- ///
- template <class T, int instance>
- inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
- ///
- template <class T, int instance>
- inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
- ///
- template <class T, int instance>
- inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}
- NAMESPACE_END
- NAMESPACE_BEGIN(std)
- template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
- {
- a.swap(b);
- }
- template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)
- {
- a.swap(b);
- }
- NAMESPACE_END
- #endif
|