123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686 |
- // eccrypto.h - originally written and placed in the public domain by Wei Dai
- // deterministic signatures added by by Douglas Roark
- /// \file eccrypto.h
- /// \brief Classes and functions for Elliptic Curves over prime and binary fields
- #ifndef CRYPTOPP_ECCRYPTO_H
- #define CRYPTOPP_ECCRYPTO_H
- #include "config.h"
- #include "cryptlib.h"
- #include "pubkey.h"
- #include "integer.h"
- #include "asn.h"
- #include "hmac.h"
- #include "sha.h"
- #include "gfpcrypt.h"
- #include "dh.h"
- #include "mqv.h"
- #include "hmqv.h"
- #include "fhmqv.h"
- #include "ecp.h"
- #include "ec2n.h"
- #include <iosfwd>
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4231 4275)
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- /// \brief Elliptic Curve Parameters
- /// \tparam EC elliptic curve field
- /// \details This class corresponds to the ASN.1 sequence of the same name
- /// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
- template <class EC>
- class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
- {
- typedef DL_GroupParameters_EC<EC> ThisClass;
- public:
- typedef EC EllipticCurve;
- typedef typename EllipticCurve::Point Point;
- typedef Point Element;
- typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
- virtual ~DL_GroupParameters_EC() {}
- /// \brief Construct an EC GroupParameters
- DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
- /// \brief Construct an EC GroupParameters
- /// \param oid the OID of a curve
- DL_GroupParameters_EC(const OID &oid)
- : m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
- /// \brief Construct an EC GroupParameters
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param k the cofactor
- DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
- : m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
- /// \brief Construct an EC GroupParameters
- /// \param bt BufferedTransformation with group parameters
- DL_GroupParameters_EC(BufferedTransformation &bt)
- : m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
- /// \brief Initialize an EC GroupParameters using {EC,G,n,k}
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param k the cofactor
- /// \details This Initialize() function overload initializes group parameters from existing parameters.
- void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
- {
- this->m_groupPrecomputation.SetCurve(ec);
- this->SetSubgroupGenerator(G);
- m_n = n;
- m_k = k;
- }
- /// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
- /// \param oid the OID of a curve
- /// \details This Initialize() function overload initializes group parameters from existing parameters.
- void Initialize(const OID &oid);
- // NameValuePairs
- bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
- void AssignFrom(const NameValuePairs &source);
- // GeneratibleCryptoMaterial interface
- /// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
- /*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
- void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
- // DL_GroupParameters
- const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
- DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
- const Integer & GetSubgroupOrder() const {return m_n;}
- Integer GetCofactor() const;
- bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
- bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
- bool FastSubgroupCheckAvailable() const {return false;}
- void EncodeElement(bool reversible, const Element &element, byte *encoded) const
- {
- if (reversible)
- GetCurve().EncodePoint(encoded, element, m_compress);
- else
- element.x.Encode(encoded, GetEncodedElementSize(false));
- }
- virtual unsigned int GetEncodedElementSize(bool reversible) const
- {
- if (reversible)
- return GetCurve().EncodedPointSize(m_compress);
- else
- return GetCurve().GetField().MaxElementByteLength();
- }
- Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
- {
- Point result;
- if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
- throw DL_BadElement();
- if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
- throw DL_BadElement();
- return result;
- }
- Integer ConvertElementToInteger(const Element &element) const;
- Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
- bool IsIdentity(const Element &element) const {return element.identity;}
- void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
- static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
- // ASN1Key
- OID GetAlgorithmID() const;
- // used by MQV
- Element MultiplyElements(const Element &a, const Element &b) const;
- Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
- // non-inherited
- // enumerate OIDs for recommended parameters, use OID() to get first one
- static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
- void BERDecode(BufferedTransformation &bt);
- void DEREncode(BufferedTransformation &bt) const;
- void SetPointCompression(bool compress) {m_compress = compress;}
- bool GetPointCompression() const {return m_compress;}
- void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
- bool GetEncodeAsOID() const {return m_encodeAsOID;}
- const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
- bool operator==(const ThisClass &rhs) const
- {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
- protected:
- unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
- unsigned int ExponentLength() const {return m_n.ByteCount();}
- OID m_oid; // set if parameters loaded from a recommended curve
- Integer m_n; // order of base point
- mutable Integer m_k; // cofactor
- mutable bool m_compress, m_encodeAsOID; // presentation details
- };
- inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);
- /// \brief Elliptic Curve Discrete Log (DL) public key
- /// \tparam EC elliptic curve field
- template <class EC>
- class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
- {
- public:
- typedef typename EC::Point Element;
- virtual ~DL_PublicKey_EC() {}
- /// \brief Initialize an EC Public Key using {GP,Q}
- /// \param params group parameters
- /// \param Q the public point
- /// \details This Initialize() function overload initializes a public key from existing parameters.
- void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
- {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
- /// \brief Initialize an EC Public Key using {EC,G,n,Q}
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param Q the public point
- /// \details This Initialize() function overload initializes a public key from existing parameters.
- void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
- {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
- // X509PublicKey
- void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
- void DEREncodePublicKey(BufferedTransformation &bt) const;
- };
- /// \brief Elliptic Curve Discrete Log (DL) private key
- /// \tparam EC elliptic curve field
- template <class EC>
- class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
- {
- public:
- typedef typename EC::Point Element;
- virtual ~DL_PrivateKey_EC();
- /// \brief Initialize an EC Private Key using {GP,x}
- /// \param params group parameters
- /// \param x the private exponent
- /// \details This Initialize() function overload initializes a private key from existing parameters.
- void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
- {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
- /// \brief Initialize an EC Private Key using {EC,G,n,x}
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param x the private exponent
- /// \details This Initialize() function overload initializes a private key from existing parameters.
- void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
- {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
- /// \brief Create an EC private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param params the EC group parameters
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
- {this->GenerateRandom(rng, params);}
- /// \brief Create an EC private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
- {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
- // PKCS8PrivateKey
- void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
- void DEREncodePrivateKey(BufferedTransformation &bt) const;
- };
- // Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
- template<class EC>
- DL_PrivateKey_EC<EC>::~DL_PrivateKey_EC() {}
- /// \brief Elliptic Curve Diffie-Hellman
- /// \tparam EC elliptic curve field
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
- /// \since Crypto++ 3.0
- template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
- struct ECDH
- {
- typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
- };
- /// \brief Elliptic Curve Menezes-Qu-Vanstone
- /// \tparam EC elliptic curve field
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
- template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
- struct ECMQV
- {
- typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
- };
- /// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
- /// \tparam EC elliptic curve field
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
- /// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
- /// \sa CofactorMultiplicationOption
- template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
- struct ECHMQV
- {
- typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
- };
- typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
- typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
- typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
- typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
- /// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
- /// \tparam EC elliptic curve field
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
- /// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
- /// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
- /// \sa CofactorMultiplicationOption
- template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
- struct ECFHMQV
- {
- typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
- };
- typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
- typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
- typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
- typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
- /// \brief Elliptic Curve Discrete Log (DL) keys
- /// \tparam EC elliptic curve field
- template <class EC>
- struct DL_Keys_EC
- {
- typedef DL_PublicKey_EC<EC> PublicKey;
- typedef DL_PrivateKey_EC<EC> PrivateKey;
- };
- // Forward declaration; documented below
- template <class EC, class H>
- struct ECDSA;
- /// \brief Elliptic Curve DSA keys
- /// \tparam EC elliptic curve field
- /// \since Crypto++ 3.2
- template <class EC>
- struct DL_Keys_ECDSA
- {
- typedef DL_PublicKey_EC<EC> PublicKey;
- typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
- };
- /// \brief Elliptic Curve DSA (ECDSA) signature algorithm
- /// \tparam EC elliptic curve field
- /// \since Crypto++ 3.2
- template <class EC>
- class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
- };
- /// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
- /// \tparam EC elliptic curve field
- /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
- /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
- /// \since Crypto++ 6.0
- template <class EC, class H>
- class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
- };
- /// \brief Elliptic Curve NR (ECNR) signature algorithm
- /// \tparam EC elliptic curve field
- template <class EC>
- class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
- };
- /// \brief Elliptic Curve DSA (ECDSA) signature scheme
- /// \tparam EC elliptic curve field
- /// \tparam H HashTransformation derived class
- /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
- /// \since Crypto++ 3.2
- template <class EC, class H>
- struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
- {
- };
- /// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
- /// \tparam EC elliptic curve field
- /// \tparam H HashTransformation derived class
- /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
- /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
- /// \since Crypto++ 6.0
- template <class EC, class H>
- struct ECDSA_RFC6979 : public DL_SS<
- DL_Keys_ECDSA<EC>,
- DL_Algorithm_ECDSA_RFC6979<EC, H>,
- DL_SignatureMessageEncodingMethod_DSA,
- H,
- ECDSA_RFC6979<EC,H> >
- {
- static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
- };
- /// \brief Elliptic Curve NR (ECNR) signature scheme
- /// \tparam EC elliptic curve field
- /// \tparam H HashTransformation derived class
- template <class EC, class H = SHA1>
- struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
- {
- };
- // ******************************************
- template <class EC>
- class DL_PublicKey_ECGDSA;
- template <class EC>
- class DL_PrivateKey_ECGDSA;
- /// \brief Elliptic Curve German DSA key for ISO/IEC 15946
- /// \tparam EC elliptic curve field
- /// \sa ECGDSA
- /// \since Crypto++ 6.0
- template <class EC>
- class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
- {
- public:
- typedef typename EC::Point Element;
- virtual ~DL_PrivateKey_ECGDSA() {}
- /// \brief Initialize an EC Private Key using {GP,x}
- /// \param params group parameters
- /// \param x the private exponent
- /// \details This Initialize() function overload initializes a private key from existing parameters.
- void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
- {
- this->AccessGroupParameters() = params;
- this->SetPrivateExponent(x);
- CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
- }
- /// \brief Initialize an EC Private Key using {EC,G,n,x}
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param x the private exponent
- /// \details This Initialize() function overload initializes a private key from existing parameters.
- void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
- {
- this->AccessGroupParameters().Initialize(ec, G, n);
- this->SetPrivateExponent(x);
- CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
- }
- /// \brief Create an EC private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param params the EC group parameters
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
- {this->GenerateRandom(rng, params);}
- /// \brief Create an EC private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
- {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
- virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
- {
- const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters();
- pub.AccessAbstractGroupParameters().AssignFrom(params);
- const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
- pub.SetPublicElement(params.ExponentiateBase(xInv));
- CRYPTOPP_ASSERT(xInv.NotZero());
- }
- virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
- {
- return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
- DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
- }
- virtual void AssignFrom(const NameValuePairs &source)
- {
- AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
- DL_PrivateKey_ECGDSA<EC> >(this, source);
- }
- // PKCS8PrivateKey
- void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
- void DEREncodePrivateKey(BufferedTransformation &bt) const;
- };
- /// \brief Elliptic Curve German DSA key for ISO/IEC 15946
- /// \tparam EC elliptic curve field
- /// \sa ECGDSA
- /// \since Crypto++ 6.0
- template <class EC>
- class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
- {
- typedef DL_PublicKey_ECGDSA<EC> ThisClass;
- public:
- typedef typename EC::Point Element;
- virtual ~DL_PublicKey_ECGDSA() {}
- /// \brief Initialize an EC Public Key using {GP,Q}
- /// \param params group parameters
- /// \param Q the public point
- /// \details This Initialize() function overload initializes a public key from existing parameters.
- void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
- {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
- /// \brief Initialize an EC Public Key using {EC,G,n,Q}
- /// \param ec the elliptic curve
- /// \param G the base point
- /// \param n the order of the base point
- /// \param Q the public point
- /// \details This Initialize() function overload initializes a public key from existing parameters.
- void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
- {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
- virtual void AssignFrom(const NameValuePairs &source)
- {
- DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
- if (source.GetThisPointer(pPrivateKey))
- pPrivateKey->MakePublicKey(*this);
- else
- {
- this->AccessAbstractGroupParameters().AssignFrom(source);
- AssignFromHelper(this, source)
- CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
- }
- }
- // DL_PublicKey<T>
- virtual void SetPublicElement(const Element &y)
- {this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
- // X509PublicKey
- void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
- void DEREncodePublicKey(BufferedTransformation &bt) const;
- };
- /// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
- /// \tparam EC elliptic curve field
- /// \sa ECGDSA
- /// \since Crypto++ 6.0
- template <class EC>
- struct DL_Keys_ECGDSA
- {
- typedef DL_PublicKey_ECGDSA<EC> PublicKey;
- typedef DL_PrivateKey_ECGDSA<EC> PrivateKey;
- };
- /// \brief Elliptic Curve German DSA signature algorithm
- /// \tparam EC elliptic curve field
- /// \sa ECGDSA
- /// \since Crypto++ 6.0
- template <class EC>
- class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
- };
- /// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
- /// \tparam EC elliptic curve field
- /// \tparam H HashTransformation derived class
- /// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
- /// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
- /// ECGDSA (October 24, 2006)</A>
- /// \since Crypto++ 6.0
- template <class EC, class H>
- struct ECGDSA : public DL_SS<
- DL_Keys_ECGDSA<EC>,
- DL_Algorithm_ECGDSA<EC>,
- DL_SignatureMessageEncodingMethod_DSA,
- H>
- {
- static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
- };
- // ******************************************
- /// \brief Elliptic Curve Integrated Encryption Scheme
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
- /// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
- /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
- /// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
- /// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
- /// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
- /// You should prefer an Integrated Encryption Scheme over homegrown schemes.
- /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
- /// If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
- /// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
- /// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
- /// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
- /// SHA1 is used for compatibility reasons, but it can be changed if desired.
- /// \sa DLIES, ECIES_P1363, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
- /// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
- /// Curve Integrated Encryption Schemes</A>
- /// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
- template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
- struct ECIES
- : public DL_ES<
- DL_Keys_EC<EC>,
- DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
- DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
- DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
- ECIES<EC> >
- {
- // TODO: fix this after name is standardized
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
- };
- /// \brief Elliptic Curve Integrated Encryption Scheme for P1363
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
- /// \details ECIES_P1363 is an Elliptic Curve based Integrated Encryption Scheme (IES) for P1363. The scheme combines a Key Encapsulation
- /// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
- /// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
- /// You should prefer an Integrated Encryption Scheme over homegrown schemes.
- /// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
- /// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Enryption
- /// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
- /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
- /// If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
- /// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
- /// \details The default template parameters ensure compatibility with P1363. The combination of
- /// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
- /// SHA1 is used for compatibility reasons, but it can be changed if desired.
- /// \sa DLIES, ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
- /// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
- /// Curve Integrated Encryption Schemes</A>
- /// \since Crypto++ 4.0
- template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication>
- struct ECIES_P1363
- : public DL_ES<
- DL_Keys_EC<EC>,
- DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
- DL_KeyDerivationAlgorithm_P1363<typename EC::Point, false, P1363_KDF2<HASH> >,
- DL_EncryptionAlgorithm_Xor<HMAC<HASH>, false, true>,
- ECIES<EC> >
- {
- // TODO: fix this after name is standardized
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES-P1363";}
- };
- NAMESPACE_END
- #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
- #include "eccrypto.cpp"
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
- NAMESPACE_END
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #endif
|