123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- // gf2n.h - originally written and placed in the public domain by Wei Dai
- /// \file gf2n.h
- /// \brief Classes and functions for schemes over GF(2^n)
- #ifndef CRYPTOPP_GF2N_H
- #define CRYPTOPP_GF2N_H
- #include "cryptlib.h"
- #include "secblock.h"
- #include "algebra.h"
- #include "misc.h"
- #include "asn.h"
- #include <iosfwd>
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4231 4275)
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- /// \brief Polynomial with Coefficients in GF(2)
- /*! \nosubgrouping */
- class CRYPTOPP_DLL PolynomialMod2
- {
- public:
- /// \name ENUMS, EXCEPTIONS, and TYPEDEFS
- //@{
- /// \brief Exception thrown when divide by zero is encountered
- class DivideByZero : public Exception
- {
- public:
- DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}
- };
- typedef unsigned int RandomizationParameter;
- //@}
- /// \name CREATORS
- //@{
- /// \brief Construct the zero polynomial
- PolynomialMod2();
- /// Copy construct a PolynomialMod2
- PolynomialMod2(const PolynomialMod2& t);
- /// \brief Construct a PolynomialMod2 from a word
- /// \details value should be encoded with the least significant bit as coefficient to x^0
- /// and most significant bit as coefficient to x^(WORD_BITS-1)
- /// bitLength denotes how much memory to allocate initially
- PolynomialMod2(word value, size_t bitLength=WORD_BITS);
- /// \brief Construct a PolynomialMod2 from big-endian byte array
- PolynomialMod2(const byte *encodedPoly, size_t byteCount)
- {Decode(encodedPoly, byteCount);}
- /// \brief Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation
- PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
- {Decode(encodedPoly, byteCount);}
- /// \brief Create a uniformly distributed random polynomial
- /// \details Create a random polynomial uniformly distributed over all polynomials with degree less than bitcount
- PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
- {Randomize(rng, bitcount);}
- /// \brief Provides x^i
- /// \return x^i
- static PolynomialMod2 CRYPTOPP_API Monomial(size_t i);
- /// \brief Provides x^t0 + x^t1 + x^t2
- /// \return x^t0 + x^t1 + x^t2
- static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
- /// \brief Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4
- /// \return x^t0 + x^t1 + x^t2 + x^t3 + x^t4
- static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
- /// \brief Provides x^(n-1) + ... + x + 1
- /// \return x^(n-1) + ... + x + 1
- static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);
- /// \brief The Zero polinomial
- /// \return the zero polynomial
- static const PolynomialMod2 & CRYPTOPP_API Zero();
- /// \brief The One polinomial
- /// \return the one polynomial
- static const PolynomialMod2 & CRYPTOPP_API One();
- //@}
- /// \name ENCODE/DECODE
- //@{
- /// minimum number of bytes to encode this polynomial
- /*! MinEncodedSize of 0 is 1 */
- unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}
- /// encode in big-endian format
- /// \details if outputLen < MinEncodedSize, the most significant bytes will be dropped
- /// if outputLen > MinEncodedSize, the most significant bytes will be padded
- void Encode(byte *output, size_t outputLen) const;
- ///
- void Encode(BufferedTransformation &bt, size_t outputLen) const;
- ///
- void Decode(const byte *input, size_t inputLen);
- ///
- //* Precondition: bt.MaxRetrievable() >= inputLen
- void Decode(BufferedTransformation &bt, size_t inputLen);
- /// encode value as big-endian octet string
- void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
- /// decode value as big-endian octet string
- void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
- //@}
- /// \name ACCESSORS
- //@{
- /// number of significant bits = Degree() + 1
- unsigned int BitCount() const;
- /// number of significant bytes = ceiling(BitCount()/8)
- unsigned int ByteCount() const;
- /// number of significant words = ceiling(ByteCount()/sizeof(word))
- unsigned int WordCount() const;
- /// return the n-th bit, n=0 being the least significant bit
- bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
- /// return the n-th byte
- byte GetByte(size_t n) const;
- /// the zero polynomial will return a degree of -1
- signed int Degree() const {return (signed int)(BitCount()-1U);}
- /// degree + 1
- unsigned int CoefficientCount() const {return BitCount();}
- /// return coefficient for x^i
- int GetCoefficient(size_t i) const
- {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
- /// return coefficient for x^i
- int operator[](unsigned int i) const {return GetCoefficient(i);}
- ///
- bool IsZero() const {return !*this;}
- ///
- bool Equals(const PolynomialMod2 &rhs) const;
- //@}
- /// \name MANIPULATORS
- //@{
- ///
- PolynomialMod2& operator=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator&=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator^=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;}
- ///
- PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;}
- ///
- PolynomialMod2& operator*=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator/=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator%=(const PolynomialMod2& t);
- ///
- PolynomialMod2& operator<<=(unsigned int);
- ///
- PolynomialMod2& operator>>=(unsigned int);
- ///
- void Randomize(RandomNumberGenerator &rng, size_t bitcount);
- ///
- void SetBit(size_t i, int value = 1);
- /// set the n-th byte to value
- void SetByte(size_t n, byte value);
- ///
- void SetCoefficient(size_t i, int value) {SetBit(i, value);}
- ///
- void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
- //@}
- /// \name UNARY OPERATORS
- //@{
- ///
- bool operator!() const;
- ///
- PolynomialMod2 operator+() const {return *this;}
- ///
- PolynomialMod2 operator-() const {return *this;}
- //@}
- /// \name BINARY OPERATORS
- //@{
- ///
- PolynomialMod2 And(const PolynomialMod2 &b) const;
- ///
- PolynomialMod2 Xor(const PolynomialMod2 &b) const;
- ///
- PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
- ///
- PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
- ///
- PolynomialMod2 Times(const PolynomialMod2 &b) const;
- ///
- PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
- ///
- PolynomialMod2 Modulo(const PolynomialMod2 &b) const;
- ///
- PolynomialMod2 operator>>(unsigned int n) const;
- ///
- PolynomialMod2 operator<<(unsigned int n) const;
- //@}
- /// \name OTHER ARITHMETIC FUNCTIONS
- //@{
- /// sum modulo 2 of all coefficients
- unsigned int Parity() const;
- /// check for irreducibility
- bool IsIrreducible() const;
- /// is always zero since we're working modulo 2
- PolynomialMod2 Doubled() const {return Zero();}
- ///
- PolynomialMod2 Squared() const;
- /// only 1 is a unit
- bool IsUnit() const {return Equals(One());}
- /// return inverse if *this is a unit, otherwise return 0
- PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}
- /// greatest common divisor
- static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);
- /// calculate multiplicative inverse of *this mod n
- PolynomialMod2 InverseMod(const PolynomialMod2 &) const;
- /// calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
- static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);
- //@}
- /// \name INPUT/OUTPUT
- //@{
- ///
- friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
- //@}
- private:
- friend class GF2NT;
- friend class GF2NT233;
- SecWordBlock reg;
- };
- ///
- inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return a.Equals(b);}
- ///
- inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return !(a==b);}
- /// compares degree
- inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return a.Degree() > b.Degree();}
- /// compares degree
- inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return a.Degree() >= b.Degree();}
- /// compares degree
- inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return a.Degree() < b.Degree();}
- /// compares degree
- inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
- {return a.Degree() <= b.Degree();}
- ///
- inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
- ///
- inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}
- // CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
- // but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>;
- CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>;
- CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >;
- /// \brief GF(2^n) with Polynomial Basis
- class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >
- {
- public:
- GF2NP(const PolynomialMod2 &modulus);
- virtual GF2NP * Clone() const {return new GF2NP(*this);}
- virtual void DEREncode(BufferedTransformation &bt) const
- {CRYPTOPP_UNUSED(bt); CRYPTOPP_ASSERT(false);} // no ASN.1 syntax yet for general polynomial basis
- void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
- void BERDecodeElement(BufferedTransformation &in, Element &a) const;
- bool Equal(const Element &a, const Element &b) const
- {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}
- bool IsUnit(const Element &a) const
- {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree()); return !!a;}
- unsigned int MaxElementBitLength() const
- {return m;}
- unsigned int MaxElementByteLength() const
- {return (unsigned int)BitsToBytes(MaxElementBitLength());}
- Element SquareRoot(const Element &a) const;
- Element HalfTrace(const Element &a) const;
- // returns z such that z^2 + z == a
- Element SolveQuadraticEquation(const Element &a) const;
- protected:
- unsigned int m;
- };
- /// \brief GF(2^n) with Trinomial Basis
- class CRYPTOPP_DLL GF2NT : public GF2NP
- {
- public:
- // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
- GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);
- GF2NP * Clone() const {return new GF2NT(*this);}
- void DEREncode(BufferedTransformation &bt) const;
- const Element& Multiply(const Element &a, const Element &b) const;
- const Element& Square(const Element &a) const
- {return Reduced(a.Squared());}
- const Element& MultiplicativeInverse(const Element &a) const;
- protected:
- const Element& Reduced(const Element &a) const;
- unsigned int t0, t1;
- mutable PolynomialMod2 result;
- };
- /// \brief GF(2^n) for b233 and k233
- /// \details GF2NT233 is a specialization of GF2NT that provides Multiply()
- /// and Square() operations when carryless multiplies is available.
- class CRYPTOPP_DLL GF2NT233 : public GF2NT
- {
- public:
- // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
- GF2NT233(unsigned int t0, unsigned int t1, unsigned int t2);
- GF2NP * Clone() const {return new GF2NT233(*this);}
- const Element& Multiply(const Element &a, const Element &b) const;
- const Element& Square(const Element &a) const;
- };
- /// \brief GF(2^n) with Pentanomial Basis
- class CRYPTOPP_DLL GF2NPP : public GF2NP
- {
- public:
- // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
- GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
- : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t1(t1), t2(t2), t3(t3) {}
- GF2NP * Clone() const {return new GF2NPP(*this);}
- void DEREncode(BufferedTransformation &bt) const;
- private:
- unsigned int t1, t2, t3;
- };
- // construct new GF2NP from the ASN.1 sequence Characteristic-two
- CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);
- NAMESPACE_END
- #ifndef __BORLANDC__
- NAMESPACE_BEGIN(std)
- template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
- {
- a.swap(b);
- }
- NAMESPACE_END
- #endif
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #endif
|