1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036 |
- // gfpcrypt.h - originally written and placed in the public domain by Wei Dai
- // RFC6979 deterministic signatures added by Douglas Roark
- // ECGDSA added by Jeffrey Walton
- /// \file gfpcrypt.h
- /// \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
- #ifndef CRYPTOPP_GFPCRYPT_H
- #define CRYPTOPP_GFPCRYPT_H
- #include "config.h"
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4189 4231 4275)
- #endif
- #include "cryptlib.h"
- #include "pubkey.h"
- #include "integer.h"
- #include "modexppc.h"
- #include "algparam.h"
- #include "smartptr.h"
- #include "sha.h"
- #include "asn.h"
- #include "hmac.h"
- #include "misc.h"
- NAMESPACE_BEGIN(CryptoPP)
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
- /// \brief Integer-based GroupParameters specialization
- class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
- {
- typedef DL_GroupParameters_IntegerBased ThisClass;
- public:
- virtual ~DL_GroupParameters_IntegerBased() {}
- /// \brief Initialize a group parameters over integers
- /// \param params the group parameters
- void Initialize(const DL_GroupParameters_IntegerBased ¶ms)
- {Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
- /// \brief Create a group parameters over integers
- /// \param rng a RandomNumberGenerator derived class
- /// \param pbits the size of p, in bits
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
- {GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
- /// \brief Initialize a group parameters over integers
- /// \param p the modulus
- /// \param g the generator
- void Initialize(const Integer &p, const Integer &g)
- {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
- /// \brief Initialize a group parameters over integers
- /// \param p the modulus
- /// \param q the subgroup order
- /// \param g the generator
- void Initialize(const Integer &p, const Integer &q, const Integer &g)
- {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
- // ASN1Object interface
- void BERDecode(BufferedTransformation &bt);
- void DEREncode(BufferedTransformation &bt) const;
- /// \brief Generate a random key
- /// \param rng a RandomNumberGenerator to produce keying material
- /// \param alg additional initialization parameters
- /// \details Recognised NameValuePairs are ModulusSize and
- /// SubgroupOrderSize (optional)
- /// \throw KeyingErr if a key can't be generated or algorithm parameters
- /// are invalid
- void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
- /// \brief Get a named value
- /// \param name the name of the object or value to retrieve
- /// \param valueType reference to a variable that receives the value
- /// \param pValue void pointer to a variable that receives the value
- /// \return true if the value was retrieved, false otherwise
- /// \details GetVoidValue() retrieves the value of name if it exists.
- /// \note GetVoidValue() is an internal function and should be implemented
- /// by derived classes. Users should use one of the other functions instead.
- /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
- /// GetRequiredParameter() and GetRequiredIntParameter()
- bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
- /// \brief Initialize or reinitialize this key
- /// \param source NameValuePairs to assign
- void AssignFrom(const NameValuePairs &source);
- // DL_GroupParameters
- const Integer & GetSubgroupOrder() const {return m_q;}
- Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
- bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
- bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
- /// \brief Determine if subgroup membership check is fast
- /// \return true or false
- bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
- /// \brief Encodes the element
- /// \param reversible flag indicating the encoding format
- /// \param element reference to the element to encode
- /// \param encoded destination byte array for the encoded element
- /// \details EncodeElement() must be implemented in a derived class.
- /// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
- /// \sa GetEncodedElementSize(), DecodeElement(), <A
- /// HREF="http://github.com/weidai11/cryptopp/issues/40">Cygwin
- /// i386 crash at -O3</A>
- void EncodeElement(bool reversible, const Element &element, byte *encoded) const;
- /// \brief Retrieve the encoded element's size
- /// \param reversible flag indicating the encoding format
- /// \return encoded element's size, in bytes
- /// \details The format of the encoded element varies by the underlying
- /// type of the element and the reversible flag.
- /// \sa EncodeElement(), DecodeElement()
- unsigned int GetEncodedElementSize(bool reversible) const;
- /// \brief Decodes the element
- /// \param encoded byte array with the encoded element
- /// \param checkForGroupMembership flag indicating if the element should be validated
- /// \return Element after decoding
- /// \details DecodeElement() must be implemented in a derived class.
- /// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
- /// \sa GetEncodedElementSize(), EncodeElement()
- Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
- /// \brief Converts an element to an Integer
- /// \param element the element to convert to an Integer
- /// \return Element after converting to an Integer
- /// \details ConvertElementToInteger() must be implemented in a derived class.
- Integer ConvertElementToInteger(const Element &element) const
- {return element;}
- /// \brief Retrieve the maximum exponent for the group
- /// \return the maximum exponent for the group
- Integer GetMaxExponent() const;
- /// \brief Retrieve the OID of the algorithm
- /// \return OID of the algorithm
- OID GetAlgorithmID() const;
- /// \brief Retrieve the modulus for the group
- /// \return the modulus for the group
- virtual const Integer & GetModulus() const =0;
- /// \brief Set group parameters
- /// \param p the prime modulus
- /// \param g the group generator
- virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
- /// \brief Set subgroup order
- /// \param q the subgroup order
- void SetSubgroupOrder(const Integer &q)
- {m_q = q; ParametersChanged();}
- static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
- protected:
- Integer ComputeGroupOrder(const Integer &modulus) const
- {return modulus-(GetFieldType() == 1 ? 1 : -1);}
- // GF(p) = 1, GF(p^2) = 2
- virtual int GetFieldType() const =0;
- virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
- private:
- Integer m_q;
- };
- /// \brief Integer-based GroupParameters default implementation
- /// \tparam GROUP_PRECOMP group parameters precomputation specialization
- /// \tparam BASE_PRECOMP base class precomputation specialization
- template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element> >
- class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
- {
- typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
- public:
- typedef typename GROUP_PRECOMP::Element Element;
- virtual ~DL_GroupParameters_IntegerBasedImpl() {}
- // GeneratibleCryptoMaterial interface
- bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
- {return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
- void AssignFrom(const NameValuePairs &source)
- {AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
- // DL_GroupParameters
- const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
- DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
- // IntegerGroupParameters
- /// \brief Retrieve the modulus for the group
- /// \return the modulus for the group
- const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
- /// \brief Retrieves a reference to the group generator
- /// \return const reference to the group generator
- const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
- void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
- {this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
- // non-inherited
- bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
- {return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
- bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
- {return !operator==(rhs);}
- };
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
- /// \brief GF(p) group parameters
- class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
- {
- public:
- virtual ~DL_GroupParameters_GFP() {}
- /// \brief Determines if an element is an identity
- /// \param element element to check
- /// \return true if the element is an identity, false otherwise
- /// \details The identity element or or neutral element is a special element
- /// in a group that leaves other elements unchanged when combined with it.
- /// \details IsIdentity() must be implemented in a derived class.
- bool IsIdentity(const Integer &element) const {return element == Integer::One();}
- /// \brief Exponentiates a base to multiple exponents
- /// \param results an array of Elements
- /// \param base the base to raise to the exponents
- /// \param exponents an array of exponents
- /// \param exponentsCount the number of exponents in the array
- /// \details SimultaneousExponentiate() raises the base to each exponent in
- /// the exponents array and stores the result at the respective position in
- /// the results array.
- /// \details SimultaneousExponentiate() must be implemented in a derived class.
- /// \pre <tt>COUNTOF(results) == exponentsCount</tt>
- /// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
- void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
- /// \brief Get a named value
- /// \param name the name of the object or value to retrieve
- /// \param valueType reference to a variable that receives the value
- /// \param pValue void pointer to a variable that receives the value
- /// \return true if the value was retrieved, false otherwise
- /// \details GetVoidValue() retrieves the value of name if it exists.
- /// \note GetVoidValue() is an internal function and should be implemented
- /// by derived classes. Users should use one of the other functions instead.
- /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
- /// GetRequiredParameter() and GetRequiredIntParameter()
- bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
- {
- return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
- }
- // used by MQV
- Element MultiplyElements(const Element &a, const Element &b) const;
- Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
- protected:
- int GetFieldType() const {return 1;}
- };
- /// \brief GF(p) group parameters that default to safe primes
- class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
- {
- public:
- typedef NoCofactorMultiplication DefaultCofactorOption;
- virtual ~DL_GroupParameters_GFP_DefaultSafePrime() {}
- protected:
- unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
- };
- /// ElGamal encryption for safe interop
- /// \sa <A HREF="https://eprint.iacr.org/2021/923.pdf">On the
- /// (in)security of ElGamal in OpenPGP</A>,
- /// <A HREF="https://github.com/weidai11/cryptopp/issues/1059">Issue 1059</A>,
- /// <A HREF="https://nvd.nist.gov/vuln/detail/CVE-2021-40530">CVE-2021-40530</A>
- /// \since Crypto++ 8.6
- class CRYPTOPP_DLL DL_GroupParameters_ElGamal : public DL_GroupParameters_GFP_DefaultSafePrime
- {
- public:
- typedef NoCofactorMultiplication DefaultCofactorOption;
- virtual ~DL_GroupParameters_ElGamal() {}
- Integer GetMaxExponent() const
- {
- return GetSubgroupOrder()-1;
- }
- };
- /// \brief GDSA algorithm
- /// \tparam T FieldElement type or class
- /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
- template <class T>
- class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
- virtual ~DL_Algorithm_GDSA() {}
- void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- r %= q;
- Integer kInv = k.InverseMod(q);
- s = (kInv * (x*r + e)) % q;
- CRYPTOPP_ASSERT(!!r && !!s);
- }
- bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- if (r>=q || r<1 || s>=q || s<1)
- return false;
- Integer w = s.InverseMod(q);
- Integer u1 = (e * w) % q;
- Integer u2 = (r * w) % q;
- // verify r == (g^u1 * y^u2 mod p) mod q
- return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
- }
- };
- /// \brief DSA signature algorithm based on RFC 6979
- /// \tparam T FieldElement type or class
- /// \tparam H HashTransformation derived class
- /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
- /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
- /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
- /// \since Crypto++ 6.0
- template <class T, class H>
- class DL_Algorithm_DSA_RFC6979 : public DL_Algorithm_GDSA<T>, public DeterministicSignatureAlgorithm
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";}
- virtual ~DL_Algorithm_DSA_RFC6979() {}
- bool IsProbabilistic() const
- {return false;}
- bool IsDeterministic() const
- {return true;}
- // Deterministic K
- Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
- {
- static const byte zero = 0, one = 1;
- const size_t qlen = q.BitCount();
- const size_t rlen = BitsToBytes(qlen);
- // Step (a) - formatted E(m)
- SecByteBlock BH(e.MinEncodedSize());
- e.Encode(BH, BH.size());
- BH = bits2octets(BH, q);
- // Step (a) - private key to byte array
- SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize()));
- x.Encode(BX, BX.size());
- // Step (b)
- SecByteBlock V(H::DIGESTSIZE);
- std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one);
- // Step (c)
- SecByteBlock K(H::DIGESTSIZE);
- std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero);
- // Step (d)
- m_hmac.SetKey(K, K.size());
- m_hmac.Update(V, V.size());
- m_hmac.Update(&zero, 1);
- m_hmac.Update(BX, BX.size());
- m_hmac.Update(BH, BH.size());
- m_hmac.TruncatedFinal(K, K.size());
- // Step (e)
- m_hmac.SetKey(K, K.size());
- m_hmac.Update(V, V.size());
- m_hmac.TruncatedFinal(V, V.size());
- // Step (f)
- m_hmac.SetKey(K, K.size());
- m_hmac.Update(V, V.size());
- m_hmac.Update(&one, 1);
- m_hmac.Update(BX, BX.size());
- m_hmac.Update(BH, BH.size());
- m_hmac.TruncatedFinal(K, K.size());
- // Step (g)
- m_hmac.SetKey(K, K.size());
- m_hmac.Update(V, V.size());
- m_hmac.TruncatedFinal(V, V.size());
- Integer k;
- SecByteBlock temp(rlen);
- for (;;)
- {
- // We want qlen bits, but we support only hash functions with an output length
- // multiple of 8; hence, we will gather rlen bits, i.e., rolen octets.
- size_t toff = 0;
- while (toff < rlen)
- {
- m_hmac.Update(V, V.size());
- m_hmac.TruncatedFinal(V, V.size());
- size_t cc = STDMIN(V.size(), temp.size() - toff);
- memcpy_s(temp+toff, temp.size() - toff, V, cc);
- toff += cc;
- }
- k = bits2int(temp, qlen);
- if (k > 0 && k < q)
- break;
- // k is not in the proper range; update K and V, and loop.
- m_hmac.Update(V, V.size());
- m_hmac.Update(&zero, 1);
- m_hmac.TruncatedFinal(K, K.size());
- m_hmac.SetKey(K, K.size());
- m_hmac.Update(V, V.size());
- m_hmac.TruncatedFinal(V, V.size());
- }
- return k;
- }
- protected:
- Integer bits2int(const SecByteBlock& bits, size_t qlen) const
- {
- Integer ret(bits, bits.size());
- size_t blen = bits.size()*8;
- if (blen > qlen)
- ret >>= blen - qlen;
- return ret;
- }
- // RFC 6979 support function. Takes an integer and converts it into bytes that
- // are the same length as an elliptic curve's order.
- SecByteBlock int2octets(const Integer& val, size_t rlen) const
- {
- SecByteBlock block(val.MinEncodedSize());
- val.Encode(block, val.MinEncodedSize());
- if (block.size() == rlen)
- return block;
- // The least significant bytes are the ones we need to preserve.
- SecByteBlock t(rlen);
- if (block.size() > rlen)
- {
- size_t offset = block.size() - rlen;
- std::memcpy(t, block + offset, rlen);
- }
- else // block.size() < rlen
- {
- size_t offset = rlen - block.size();
- memset(t, '\x00', offset);
- std::memcpy(t + offset, block, rlen - offset);
- }
- return t;
- }
- // Turn a stream of bits into a set of bytes with the same length as an elliptic
- // curve's order.
- SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const
- {
- Integer b2 = bits2int(in, q.BitCount());
- Integer b1 = b2 - q;
- return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount());
- }
- private:
- mutable H m_hash;
- mutable HMAC<H> m_hmac;
- };
- /// \brief German Digital Signature Algorithm
- /// \tparam T FieldElement type or class
- /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
- /// \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the
- /// signature algorithm is only defined over elliptic curves. However, the library design is such that the
- /// generic algorithm reside in <tt>gfpcrypt.h</tt>.
- /// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">
- /// The Digital Signature Scheme ECGDSA (October 24, 2006)</A>
- template <class T>
- class DL_Algorithm_GDSA_ISO15946 : public DL_ElgamalLikeSignatureAlgorithm<T>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";}
- virtual ~DL_Algorithm_GDSA_ISO15946() {}
- void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- // r = x(k * G) mod q
- r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
- // s = (k * r - h(m)) * d_A mod q
- s = (k * r - e) * x % q;
- CRYPTOPP_ASSERT(!!r && !!s);
- }
- bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- if (r>=q || r<1 || s>=q || s<1)
- return false;
- const Integer& rInv = r.InverseMod(q);
- const Integer u1 = (rInv * e) % q;
- const Integer u2 = (rInv * s) % q;
- // verify x(G^u1 + P_A^u2) mod q
- return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
- }
- };
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA1>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA224>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA256>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA384>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA512>;
- /// \brief NR algorithm
- /// \tparam T FieldElement type or class
- /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
- template <class T>
- class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
- {
- public:
- CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";}
- virtual ~DL_Algorithm_NR() {}
- void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- r = (r + e) % q;
- s = (k - x*r) % q;
- CRYPTOPP_ASSERT(!!r);
- }
- bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
- {
- const Integer &q = params.GetSubgroupOrder();
- if (r>=q || r<1 || s>=q)
- return false;
- // check r == (m_g^s * m_y^r + m) mod m_q
- return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
- }
- };
- /// \brief Discrete Log (DL) public key in GF(p) groups
- /// \tparam GP GroupParameters derived class
- /// \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10.
- template <class GP>
- class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
- {
- public:
- virtual ~DL_PublicKey_GFP() {}
- /// \brief Initialize a public key over GF(p)
- /// \param params the group parameters
- /// \param y the public element
- void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y)
- {this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
- /// \brief Initialize a public key over GF(p)
- /// \param p the modulus
- /// \param g the generator
- /// \param y the public element
- void Initialize(const Integer &p, const Integer &g, const Integer &y)
- {this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
- /// \brief Initialize a public key over GF(p)
- /// \param p the modulus
- /// \param q the subgroup order
- /// \param g the generator
- /// \param y the public element
- void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
- {this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
- // X509PublicKey
- void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
- {this->SetPublicElement(Integer(bt));}
- void DEREncodePublicKey(BufferedTransformation &bt) const
- {this->GetPublicElement().DEREncode(bt);}
- };
- /// \brief Discrete Log (DL) private key in GF(p) groups
- /// \tparam GP GroupParameters derived class
- template <class GP>
- class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
- {
- public:
- virtual ~DL_PrivateKey_GFP();
- /// \brief Create a private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param modulusBits the size of the modulus, in bits
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
- {this->GenerateRandomWithKeySize(rng, modulusBits);}
- /// \brief Create a private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param p the modulus
- /// \param g the generator
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
- {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
- /// \brief Create a private key
- /// \param rng a RandomNumberGenerator derived class
- /// \param p the modulus
- /// \param q the subgroup order
- /// \param g the generator
- /// \details This function overload of Initialize() creates a new private key because it
- /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
- /// then use one of the other Initialize() overloads.
- void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
- {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
- /// \brief Initialize a private key over GF(p)
- /// \param params the group parameters
- /// \param x the private exponent
- void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x)
- {this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
- /// \brief Initialize a private key over GF(p)
- /// \param p the modulus
- /// \param g the generator
- /// \param x the private exponent
- void Initialize(const Integer &p, const Integer &g, const Integer &x)
- {this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
- /// \brief Initialize a private key over GF(p)
- /// \param p the modulus
- /// \param q the subgroup order
- /// \param g the generator
- /// \param x the private exponent
- void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
- {this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
- };
- // Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
- template <class GP>
- DL_PrivateKey_GFP<GP>::~DL_PrivateKey_GFP() {}
- /// \brief Discrete Log (DL) signing/verification keys in GF(p) groups
- struct DL_SignatureKeys_GFP
- {
- typedef DL_GroupParameters_GFP GroupParameters;
- typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
- typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
- };
- /// \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups
- struct DL_CryptoKeys_GFP
- {
- typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
- typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
- typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
- };
- /// ElGamal encryption keys for safe interop
- /// \sa <A HREF="https://eprint.iacr.org/2021/923.pdf">On the
- /// (in)security of ElGamal in OpenPGP</A>,
- /// <A HREF="https://github.com/weidai11/cryptopp/issues/1059">Issue 1059</A>,
- /// <A HREF="https://nvd.nist.gov/vuln/detail/CVE-2021-40530">CVE-2021-40530</A>
- /// \since Crypto++ 8.6
- struct DL_CryptoKeys_ElGamal
- {
- typedef DL_GroupParameters_ElGamal GroupParameters;
- typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
- typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
- };
- /// \brief DSA signature scheme
- /// \tparam H HashTransformation derived class
- /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
- /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
- template <class H>
- struct GDSA : public DL_SS<
- DL_SignatureKeys_GFP,
- DL_Algorithm_GDSA<Integer>,
- DL_SignatureMessageEncodingMethod_DSA,
- H>
- {
- };
- /// \brief NR signature scheme
- /// \tparam H HashTransformation derived class
- /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
- template <class H>
- struct NR : public DL_SS<
- DL_SignatureKeys_GFP,
- DL_Algorithm_NR<Integer>,
- DL_SignatureMessageEncodingMethod_NR,
- H>
- {
- };
- /// \brief DSA group parameters
- /// \details These are GF(p) group parameters that are allowed by the DSA standard
- /// \sa DL_Keys_DSA
- /// \since Crypto++ 1.0
- class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
- {
- public:
- virtual ~DL_GroupParameters_DSA() {}
- /// \brief Check the group for errors
- /// \param rng RandomNumberGenerator for objects which use randomized testing
- /// \param level level of thoroughness
- /// \return true if the tests succeed, false otherwise
- /// \details ValidateGroup() also checks that the lengths of p and q are allowed
- /// by the DSA standard.
- /// \details There are four levels of thoroughness:
- /// <ul>
- /// <li>0 - using this object won't cause a crash or exception
- /// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
- /// <li>2 - ensure this object will function correctly, and perform reasonable security checks
- /// <li>3 - perform reasonable security checks, and do checks that may take a long time
- /// </ul>
- /// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
- /// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
- bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
- /// \brief Generate a random key or crypto parameters
- /// \param rng a RandomNumberGenerator to produce keying material
- /// \param alg additional initialization parameters
- /// \details NameValuePairs can be ModulusSize alone; or Modulus, SubgroupOrder, and
- /// SubgroupGenerator. ModulusSize must be between <tt>DSA::MIN_PRIME_LENGTH</tt> and
- /// <tt>DSA::MAX_PRIME_LENGTH</tt>, and divisible by <tt>DSA::PRIME_LENGTH_MULTIPLE</tt>.
- /// \details An example of changing the modulus size using NameValuePairs is shown below.
- /// <pre>
- /// AlgorithmParameters params = MakeParameters
- /// (Name::ModulusSize(), 2048);
- ///
- /// DL_GroupParameters_DSA groupParams;
- /// groupParams.GenerateRandom(prng, params);
- /// </pre>
- /// \throw KeyingErr if a key can't be generated or algorithm parameters are invalid.
- void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
- /// \brief Check the prime length for errors
- /// \param pbits number of bits in the prime number
- /// \return true if the tests succeed, false otherwise
- static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
- {return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
- /// \brief DSA prime length
- enum {
- /// \brief Minimum prime length
- MIN_PRIME_LENGTH = 1024,
- /// \brief Maximum prime length
- MAX_PRIME_LENGTH = 3072,
- /// \brief Prime length multiple
- PRIME_LENGTH_MULTIPLE = 1024
- };
- };
- template <class H>
- class DSA2;
- /// \brief DSA keys
- /// \sa DL_GroupParameters_DSA
- /// \since Crypto++ 1.0
- struct DL_Keys_DSA
- {
- typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
- typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> > PrivateKey;
- };
- /// \brief DSA signature scheme
- /// \tparam H HashTransformation derived class
- /// \details The class is named DSA2 instead of DSA for backwards compatibility because
- /// DSA was a non-template class.
- /// \details DSA default method GenerateRandom uses a 2048-bit modulus and a 224-bit subgoup by default.
- /// The modulus can be changed using the following code:
- /// <pre>
- /// DSA::PrivateKey privateKey;
- /// privateKey.GenerateRandomWithKeySize(prng, 2048);
- /// </pre>
- /// \details The subgroup order can be changed using the following code:
- /// <pre>
- /// AlgorithmParameters params = MakeParameters
- /// (Name::ModulusSize(), 2048)
- /// (Name::SubgroupOrderSize(), 256);
- ///
- /// DSA::PrivateKey privateKey;
- /// privateKey.GenerateRandom(prng, params);
- /// </pre>
- /// \sa <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3,
- /// <a href="https://www.cryptopp.com/wiki/Digital_Signature_Algorithm">Digital Signature Algorithm</a> on the wiki, and
- /// <a href="https://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</a> on the wiki.
- /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2, Crypto++ 6.1 for 2048-bit modulus.
- template <class H>
- class DSA2 : public DL_SS<
- DL_Keys_DSA,
- DL_Algorithm_GDSA<Integer>,
- DL_SignatureMessageEncodingMethod_DSA,
- H,
- DSA2<H> >
- {
- public:
- static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
- };
- /// \brief DSA deterministic signature scheme
- /// \tparam H HashTransformation derived class
- /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
- /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
- template <class H>
- struct DSA_RFC6979 : public DL_SS<
- DL_SignatureKeys_GFP,
- DL_Algorithm_DSA_RFC6979<Integer, H>,
- DL_SignatureMessageEncodingMethod_DSA,
- H,
- DSA_RFC6979<H> >
- {
- static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();}
- };
- /// DSA with SHA-1, typedef'd for backwards compatibility
- typedef DSA2<SHA1> DSA;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
- CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> >;
- /// \brief P1363 based XOR Encryption Method
- /// \tparam MAC MessageAuthenticationCode derived class used for MAC computation
- /// \tparam DHAES_MODE flag indicating DHAES mode
- /// \tparam LABEL_OCTETS flag indicating the label is octet count
- /// \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an
- /// early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated
- /// Ecryption Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
- /// \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with
- /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
- /// \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with
- /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
- /// \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters.
- /// \since Crypto++ 4.0
- template <class MAC, bool DHAES_MODE, bool LABEL_OCTETS=false>
- class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
- {
- public:
- virtual ~DL_EncryptionAlgorithm_Xor() {}
- bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
- size_t GetSymmetricKeyLength(size_t plaintextLength) const
- {return plaintextLength + static_cast<size_t>(MAC::DEFAULT_KEYLENGTH);}
- size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
- {return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
- size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
- {return SaturatingSubtract(ciphertextLength, static_cast<size_t>(MAC::DIGESTSIZE));}
- void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const
- {
- CRYPTOPP_UNUSED(rng);
- const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
- if (DHAES_MODE)
- {
- macKey = key;
- cipherKey = key + MAC::DEFAULT_KEYLENGTH;
- }
- else
- {
- cipherKey = key;
- macKey = key + plaintextLength;
- }
- ConstByteArrayParameter encodingParameters;
- parameters.GetValue(Name::EncodingParameters(), encodingParameters);
- if (plaintextLength) // Coverity finding
- xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
- MAC mac(macKey);
- mac.Update(ciphertext, plaintextLength);
- mac.Update(encodingParameters.begin(), encodingParameters.size());
- if (DHAES_MODE)
- {
- byte L[8];
- PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
- mac.Update(L, 8);
- }
- mac.Final(ciphertext + plaintextLength);
- }
- DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const
- {
- size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
- const byte *cipherKey, *macKey;
- if (DHAES_MODE)
- {
- macKey = key;
- cipherKey = key + MAC::DEFAULT_KEYLENGTH;
- }
- else
- {
- cipherKey = key;
- macKey = key + plaintextLength;
- }
- ConstByteArrayParameter encodingParameters;
- parameters.GetValue(Name::EncodingParameters(), encodingParameters);
- MAC mac(macKey);
- mac.Update(ciphertext, plaintextLength);
- mac.Update(encodingParameters.begin(), encodingParameters.size());
- if (DHAES_MODE)
- {
- byte L[8];
- PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
- mac.Update(L, 8);
- }
- if (!mac.Verify(ciphertext + plaintextLength))
- return DecodingResult();
- if (plaintextLength) // Coverity finding
- xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
- return DecodingResult(plaintextLength);
- }
- };
- /// \brief P1363 based Key Derivation Method
- /// \tparam T FieldElement type or class
- /// \tparam DHAES_MODE flag indicating DHAES mode
- /// \tparam KDF key derivation function
- /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
- template <class T, bool DHAES_MODE, class KDF>
- class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
- {
- public:
- virtual ~DL_KeyDerivationAlgorithm_P1363() {}
- bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
- void Derive(const DL_GroupParameters<T> ¶ms, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs ¶meters) const
- {
- SecByteBlock agreedSecret;
- if (DHAES_MODE)
- {
- agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
- params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
- params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
- }
- else
- {
- agreedSecret.New(params.GetEncodedElementSize(false));
- params.EncodeElement(false, agreedElement, agreedSecret);
- }
- ConstByteArrayParameter derivationParameters;
- parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
- KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
- }
- };
- /// \brief Discrete Log Integrated Encryption Scheme
- /// \tparam COFACTOR_OPTION cofactor multiplication option
- /// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
- /// \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label
- /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
- /// \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM)
- /// with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
- /// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
- /// You should prefer an Integrated Encryption Scheme over homegrown schemes.
- /// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
- /// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
- /// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
- /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with
- /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
- /// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES
- /// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
- /// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
- /// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
- /// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
- /// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
- /// \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor.
- /// <pre>
- /// AutoSeededRandomPool prng;
- /// DL_PrivateKey_GFP<DL_GroupParameters_GFP> key;
- /// key.Initialize(prng, 2048);
- ///
- /// DLIES<SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
- /// DLIES<SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
- /// </pre>
- /// \sa ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">Discrete Log Integrated Encryption Scheme (DLIES)</a>,
- /// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
- /// Curve Integrated Encryption Schemes</A>
- /// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
- template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS=false>
- struct DLIES
- : public DL_ES<
- DL_CryptoKeys_GFP,
- DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
- DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
- DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
- DLIES<> >
- {
- static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
- };
- NAMESPACE_END
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #endif
|