1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013 |
- // misc.h - originally written and placed in the public domain by Wei Dai
- /// \file misc.h
- /// \brief Utility functions for the Crypto++ library.
- #ifndef CRYPTOPP_MISC_H
- #define CRYPTOPP_MISC_H
- #include "config.h"
- #include "cryptlib.h"
- #include "secblockfwd.h"
- #include "smartptr.h"
- #include "stdcpp.h"
- #include "trap.h"
- #if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
- #if (CRYPTOPP_MSC_VERSION)
- # pragma warning(push)
- # pragma warning(disable: 4146 4514)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6326)
- # endif
- #endif
- // Issue 340 and Issue 793
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wconversion"
- # pragma GCC diagnostic ignored "-Wsign-conversion"
- # pragma GCC diagnostic ignored "-Wunused-function"
- #endif
- #ifdef _MSC_VER
- #if _MSC_VER >= 1400
- // VC2005 workaround: disable declarations that conflict with winnt.h
- #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1
- #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2
- #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3
- #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4
- #include <intrin.h>
- #undef _interlockedbittestandset
- #undef _interlockedbittestandreset
- #undef _interlockedbittestandset64
- #undef _interlockedbittestandreset64
- #define CRYPTOPP_FAST_ROTATE(x) 1
- #elif _MSC_VER >= 1300
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64)
- #else
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
- #endif
- #elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \
- (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM)))
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
- #elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions
- #define CRYPTOPP_FAST_ROTATE(x) 1
- #else
- #define CRYPTOPP_FAST_ROTATE(x) 0
- #endif
- #ifdef __BORLANDC__
- #include <mem.h>
- #include <stdlib.h>
- #endif
- #if (defined(__GNUC__) || defined(__clang__)) && defined(__linux__)
- #define CRYPTOPP_BYTESWAP_AVAILABLE 1
- #include <byteswap.h>
- #endif
- // Limit to ARM A-32. Aarch64 is failing self tests.
- #if defined(__arm__) && (defined(__GNUC__) || defined(__clang__)) && (__ARM_ARCH >= 6)
- #define CRYPTOPP_ARM_BYTEREV_AVAILABLE 1
- #endif
- // Limit to ARM A-32. Aarch64 is failing self tests.
- #if defined(__arm__) && (defined(__GNUC__) || defined(__clang__)) && (__ARM_ARCH >= 7)
- #define CRYPTOPP_ARM_BITREV_AVAILABLE 1
- #endif
- #if defined(__BMI__)
- # include <x86intrin.h>
- # include <immintrin.h>
- #endif // GCC and BMI
- // More LLVM bullshit. Apple Clang 6.0 does not define them.
- // Later version of Clang defines them and results in warnings.
- #if defined(__clang__)
- # ifndef _blsr_u32
- # define _blsr_u32 __blsr_u32
- # endif
- # ifndef _blsr_u64
- # define _blsr_u64 __blsr_u64
- # endif
- # ifndef _tzcnt_u32
- # define _tzcnt_u32 __tzcnt_u32
- # endif
- # ifndef _tzcnt_u64
- # define _tzcnt_u64 __tzcnt_u64
- # endif
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief The maximum value of a machine word
- /// \details <tt>SIZE_MAX</tt> provides the maximum value of a machine word. The value
- /// is <tt>0xffffffff</tt> on 32-bit targets, and <tt>0xffffffffffffffff</tt> on 64-bit
- /// targets.
- /// \details If <tt>SIZE_MAX</tt> is not defined, then <tt>__SIZE_MAX__</tt> is used if
- /// defined. If not defined, then <tt>SIZE_T_MAX</tt> is used if defined. If not defined,
- /// then the library uses <tt>std::numeric_limits<size_t>::max()</tt>.
- /// \details The library prefers <tt>__SIZE_MAX__</tt> or <tt>__SIZE_T_MAX__</tt> because
- /// they are effectively <tt>constexpr</tt> that is optimized well by all compilers.
- /// <tt>std::numeric_limits<size_t>::max()</tt> is not always a <tt>constexpr</tt>, and
- /// it is not always optimized well.
- # define SIZE_MAX ...
- #else
- // Its amazing portability problems still plague this simple concept in 2015.
- // http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max
- // Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208
- #ifndef SIZE_MAX
- # if defined(__SIZE_MAX__)
- # define SIZE_MAX __SIZE_MAX__
- # elif defined(SIZE_T_MAX)
- # define SIZE_MAX SIZE_T_MAX
- # elif defined(__SIZE_TYPE__)
- # define SIZE_MAX (~(__SIZE_TYPE__)0)
- # else
- # define SIZE_MAX ((std::numeric_limits<size_t>::max)())
- # endif
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- NAMESPACE_BEGIN(CryptoPP)
- // Forward declaration for IntToString specialization
- class Integer;
- // ************** compile-time assertion ***************
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Compile time assertion
- /// \param expr the expression to evaluate
- /// \details Asserts the expression <tt>expr</tt> during compile. If C++14 and
- /// N3928 are available, then C++14 <tt>static_assert</tt> is used. Otherwise,
- /// a <tt>CompileAssert</tt> structure is used. When the structure is used
- /// a negative-sized array triggers the assert at compile time.
- # define CRYPTOPP_COMPILE_ASSERT(expr) { ... }
- #elif defined(CRYPTOPP_CXX17_STATIC_ASSERT)
- # define CRYPTOPP_COMPILE_ASSERT(expr) static_assert(expr)
- #else // CRYPTOPP_DOXYGEN_PROCESSING
- template <bool b>
- struct CompileAssert
- {
- static char dummy[2*b-1];
- };
- #define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
- #define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y)
- #define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y
- #if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS)
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance)
- #else
- # if defined(__GNUC__) || defined(__clang__)
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
- static CompileAssert<(assertion)> \
- CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused))
- # else
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
- static CompileAssert<(assertion)> \
- CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance)
- # endif // GCC or Clang
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- // ************** count elements in an array ***************
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Counts elements in an array
- /// \param arr an array of elements
- /// \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined
- /// to <tt>_countof(x)</tt> to ensure correct results for pointers.
- /// \note COUNTOF does not produce correct results with pointers, and an array must be used.
- /// <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using
- /// <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms.
- # define COUNTOF(arr)
- #else
- // VS2005 added _countof
- #ifndef COUNTOF
- # if defined(_MSC_VER) && (_MSC_VER >= 1400)
- # define COUNTOF(x) _countof(x)
- # else
- # define COUNTOF(x) (sizeof(x)/sizeof(x[0]))
- # endif
- #endif // COUNTOF
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- // ************** misc classes ***************
- /// \brief An Empty class
- /// \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists.
- class CRYPTOPP_DLL Empty
- {
- };
- #if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
- template <class BASE1, class BASE2>
- class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2
- {
- };
- template <class BASE1, class BASE2, class BASE3>
- class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3
- {
- };
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- /// \tparam T class or type
- /// \brief Uses encapsulation to hide an object in derived classes
- /// \details The object T is declared as protected.
- template <class T>
- class ObjectHolder
- {
- protected:
- T m_object;
- };
- /// \brief Ensures an object is not copyable
- /// \details NotCopyable ensures an object is not copyable by making the
- /// copy constructor and assignment operator private. Deleters are used
- /// under C++11.
- /// \sa Clonable class
- class NotCopyable
- {
- public:
- NotCopyable() {}
- #if CRYPTOPP_CXX11_DELETED_FUNCTIONS
- NotCopyable(const NotCopyable &) = delete;
- void operator=(const NotCopyable &) = delete;
- #else
- private:
- NotCopyable(const NotCopyable &);
- void operator=(const NotCopyable &);
- #endif
- };
- /// \brief An object factory function
- /// \tparam T class or type
- /// \details NewObject overloads operator()().
- template <class T>
- struct NewObject
- {
- T* operator()() const {return new T;}
- };
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief A memory barrier
- /// \details MEMORY_BARRIER attempts to ensure reads and writes are completed
- /// in the absence of a language synchronization point. It is used by the
- /// Singleton class if the compiler supports it. The barrier is provided at the
- /// customary places in a double-checked initialization.
- /// \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if
- /// C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>,
- /// <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used.
- #define MEMORY_BARRIER ...
- #else
- #if defined(CRYPTOPP_CXX11_ATOMIC)
- # define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel)
- #elif (_MSC_VER >= 1400)
- # pragma intrinsic(_ReadWriteBarrier)
- # define MEMORY_BARRIER() _ReadWriteBarrier()
- #elif defined(__INTEL_COMPILER)
- # define MEMORY_BARRIER() __memory_barrier()
- #elif defined(__GNUC__) || defined(__clang__)
- # define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory")
- #else
- # define MEMORY_BARRIER()
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Restricts the instantiation of a class to one static object without locks
- /// \tparam T the class or type
- /// \tparam F the object factory for T
- /// \tparam instance an instance counter for the class object
- /// \details This class safely initializes a static object in a multi-threaded environment. For C++03
- /// and below it will do so without using locks for portability. If two threads call Ref() at the same
- /// time, they may get back different references, and one object may end up being memory leaked. This
- /// is by design and it avoids a subtle initialization problem in a multi-threaded environment with thread
- /// local storage on early Windows platforms, like Windows XP and Windows 2003.
- /// \details For C++11 and above, a standard double-checked locking pattern with thread fences
- /// are used. The locks and fences are standard and do not hinder portability.
- /// \details Microsoft's C++11 implementation provides the necessary primitive support on Windows Vista and
- /// above when using Visual Studio 2015 (<tt>cl.exe</tt> version 19.00). If C++11 is desired, you should
- /// set <tt>WINVER</tt> or <tt>_WIN32_WINNT</tt> to 0x600 (or above), and compile with Visual Studio 2015.
- /// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking
- /// is Fixed In C++11</A>, <A HREF="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm">Dynamic
- /// Initialization and Destruction with Concurrency</A> and
- /// <A HREF="http://msdn.microsoft.com/en-us/library/6yh4a9k1.aspx">Thread Local Storage (TLS)</A> on MSDN.
- /// \since Crypto++ 5.2
- template <class T, class F = NewObject<T>, int instance=0>
- class Singleton
- {
- public:
- Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {}
- // prevent this function from being inlined
- CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const;
- private:
- F m_objectFactory;
- };
- /// \brief Return a reference to the inner Singleton object
- /// \tparam T the class or type
- /// \tparam F the object factory for T
- /// \tparam instance an instance counter for the class object
- /// \details Ref() is used to create the object using the object factory. The
- /// object is only created once with the limitations discussed in the class documentation.
- /// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A>
- /// \since Crypto++ 5.2
- template <class T, class F, int instance>
- const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
- {
- #if defined(CRYPTOPP_CXX11_ATOMIC) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) && defined(CRYPTOPP_CXX11_STATIC_INIT)
- static std::mutex s_mutex;
- static std::atomic<T*> s_pObject;
- T *p = s_pObject.load(std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_acquire);
- if (p)
- return *p;
- std::lock_guard<std::mutex> lock(s_mutex);
- p = s_pObject.load(std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_acquire);
- if (p)
- return *p;
- T *newObject = m_objectFactory();
- s_pObject.store(newObject, std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_release);
- return *newObject;
- #else
- static volatile simple_ptr<T> s_pObject;
- T *p = s_pObject.m_p;
- MEMORY_BARRIER();
- if (p)
- return *p;
- T *newObject = m_objectFactory();
- p = s_pObject.m_p;
- MEMORY_BARRIER();
- if (p)
- {
- delete newObject;
- return *p;
- }
- s_pObject.m_p = newObject;
- MEMORY_BARRIER();
- return *newObject;
- #endif
- }
- // ************** misc functions ***************
- /// \brief Create a pointer with an offset
- /// \tparam PTR a pointer type
- /// \tparam OFF a size type
- /// \param pointer a pointer
- /// \param offset a offset into the pointer
- /// \details PtrAdd can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- template <typename PTR, typename OFF>
- inline PTR PtrAdd(PTR pointer, OFF offset)
- {
- return pointer+static_cast<ptrdiff_t>(offset);
- }
- /// \brief Create a pointer with an offset
- /// \tparam PTR a pointer type
- /// \tparam OFF a size type
- /// \param pointer a pointer
- /// \param offset a offset into the pointer
- /// \details PtrSub can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- template <typename PTR, typename OFF>
- inline PTR PtrSub(PTR pointer, OFF offset)
- {
- return pointer-static_cast<ptrdiff_t>(offset);
- }
- /// \brief Determine pointer difference
- /// \tparam PTR a pointer type
- /// \param pointer1 the first pointer
- /// \param pointer2 the second pointer
- /// \details PtrDiff can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- /// pointer1 and pointer2 must point to the same object or
- /// array (or one past the end), and yields the number of
- /// elements (not bytes) difference.
- template <typename PTR>
- inline ptrdiff_t PtrDiff(const PTR pointer1, const PTR pointer2)
- {
- return pointer1 - pointer2;
- }
- /// \brief Determine pointer difference
- /// \tparam PTR a pointer type
- /// \param pointer1 the first pointer
- /// \param pointer2 the second pointer
- /// \details PtrByteDiff can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- /// pointer1 and pointer2 must point to the same object or
- /// array (or one past the end), and yields the number of
- /// bytes (not elements) difference.
- template <typename PTR>
- inline size_t PtrByteDiff(const PTR pointer1, const PTR pointer2)
- {
- return (size_t)(reinterpret_cast<uintptr_t>(pointer1) - reinterpret_cast<uintptr_t>(pointer2));
- }
- /// \brief Pointer to the first element of a string
- /// \param str std::string
- /// \details BytePtr returns NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.0
- inline byte* BytePtr(std::string& str)
- {
- // Caller wants a writable pointer
- CRYPTOPP_ASSERT(str.empty() == false);
- if (str.empty())
- return NULLPTR;
- return reinterpret_cast<byte*>(&str[0]);
- }
- /// \brief Pointer to the first element of a string
- /// \param str SecByteBlock
- /// \details BytePtr returns NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.3
- byte* BytePtr(SecByteBlock& str);
- /// \brief Const pointer to the first element of a string
- /// \param str std::string
- /// \details ConstBytePtr returns non-NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.0
- inline const byte* ConstBytePtr(const std::string& str)
- {
- if (str.empty())
- return NULLPTR;
- return reinterpret_cast<const byte*>(&str[0]);
- }
- /// \brief Const pointer to the first element of a string
- /// \param str SecByteBlock
- /// \details ConstBytePtr returns non-NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.3
- const byte* ConstBytePtr(const SecByteBlock& str);
- /// \brief Size of a string
- /// \param str std::string
- /// \return size of a string
- /// \since Crypto++ 8.3
- inline size_t BytePtrSize(const std::string& str)
- {
- return str.size();
- }
- /// \brief Size of a string
- /// \param str SecByteBlock
- /// \return size of a string
- /// \since Crypto++ 8.3
- size_t BytePtrSize(const SecByteBlock& str);
- /// \brief Integer value
- /// \details EnumToInt avoids C++20 enum-enum conversion
- /// warnings under GCC and Clang. C++11 and above use a
- /// constexpr function. C++03 and below use a macro due
- /// to [lack of] constexpr-ness in early versions of C++.
- /// \since Crypto++ 8.6
- #if (CRYPTOPP_CXX11_CONSTEXPR)
- template <typename T>
- constexpr int EnumToInt(T v) {
- return static_cast<int>(v);
- }
- #else
- # define EnumToInt(v) static_cast<int>(v)
- #endif
- #if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB)
- /// \brief Bounds checking replacement for memcpy()
- /// \param dest pointer to the destination memory block
- /// \param sizeInBytes size of the destination memory block, in bytes
- /// \param src pointer to the source memory block
- /// \param count the number of bytes to copy
- /// \throw InvalidArgument
- /// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
- /// unsafe functions like memcpy(), strcpy() and memmove(). However,
- /// not all standard libraries provides them, like Glibc. The library's
- /// memcpy_s() is a near-drop in replacement. Its only a near-replacement
- /// because the library's version throws an InvalidArgument on a bounds violation.
- /// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
- /// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
- /// makes memcpy_s() and memmove_s() available. The library will also optionally
- /// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
- /// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
- /// \details memcpy_s() will assert the pointers src and dest are not NULL
- /// in debug builds. Passing NULL for either pointer is undefined behavior.
- inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
- {
- // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
- // Pointers must be valid; otherwise undefined behavior
- CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
- // Restricted pointers. We want to check ranges, but it is not clear how to do it.
- CRYPTOPP_ASSERT(src != dest);
- // Destination buffer must be large enough to satisfy request
- CRYPTOPP_ASSERT(sizeInBytes >= count);
- if (count > sizeInBytes)
- throw InvalidArgument("memcpy_s: buffer overflow");
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4996)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6386)
- # endif
- #endif
- if (src != NULLPTR && dest != NULLPTR)
- std::memcpy(dest, src, count);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- }
- /// \brief Bounds checking replacement for memmove()
- /// \param dest pointer to the destination memory block
- /// \param sizeInBytes size of the destination memory block, in bytes
- /// \param src pointer to the source memory block
- /// \param count the number of bytes to copy
- /// \throw InvalidArgument
- /// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
- /// unsafe functions like memcpy(), strcpy() and memmove(). However,
- /// not all standard libraries provides them, like Glibc. The library's
- /// memmove_s() is a near-drop in replacement. Its only a near-replacement
- /// because the library's version throws an InvalidArgument on a bounds violation.
- /// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
- /// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
- /// makes memcpy_s() and memmove_s() available. The library will also optionally
- /// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
- /// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
- /// \details memmove_s() will assert the pointers src and dest are not NULL
- /// in debug builds. Passing NULL for either pointer is undefined behavior.
- inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
- {
- // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
- // Pointers must be valid; otherwise undefined behavior
- CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
- // Destination buffer must be large enough to satisfy request
- CRYPTOPP_ASSERT(sizeInBytes >= count);
- if (count > sizeInBytes)
- throw InvalidArgument("memmove_s: buffer overflow");
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4996)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6386)
- # endif
- #endif
- if (src != NULLPTR && dest != NULLPTR)
- std::memmove(dest, src, count);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- }
- #if __BORLANDC__ >= 0x620
- // C++Builder 2010 workaround: can't use std::memcpy_s
- // because it doesn't allow 0 lengths
- # define memcpy_s CryptoPP::memcpy_s
- # define memmove_s CryptoPP::memmove_s
- #endif
- #endif // __STDC_WANT_SECURE_LIB__
- /// \brief Swaps two variables which are arrays
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt>
- /// because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers
- /// support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not.
- /// \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables
- /// in C++03 given its an opaque type and an array?</A> on Stack Overflow.
- template <class T>
- inline void vec_swap(T& a, T& b)
- {
- // __m128i is an unsigned long long[2], and support for swapping it was
- // not added until C++11. SunCC 12.1 - 12.3 fail to consume the swap; while
- // SunCC 12.4 consumes it without -std=c++11.
- #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
- T t;
- t=a, a=b, b=t;
- #else
- std::swap(a, b);
- #endif
- }
- /// \brief Memory block initializer
- /// \param ptr pointer to the memory block being written
- /// \param val the integer value to write for each byte
- /// \param num the size of the source memory block, in bytes
- /// \details Internally the function calls memset with the value <tt>val</tt>.
- /// memset_z can be used to initialize a freshly allocated memory block.
- /// To zeroize a memory block on destruction use <tt>SecureWipeBuffer</tt>.
- /// \return the pointer to the memory block
- /// \sa SecureWipeBuffer
- inline void * memset_z(void *ptr, int val, size_t num)
- {
- // avoid extraneous warning on GCC 4.3.2 Ubuntu 8.10
- #if CRYPTOPP_GCC_VERSION >= 30001 || CRYPTOPP_LLVM_CLANG_VERSION >= 20800 || \
- CRYPTOPP_APPLE_CLANG_VERSION >= 30000
- if (__builtin_constant_p(num) && num==0)
- return ptr;
- #endif
- return std::memset(ptr, val, num);
- }
- /// \brief Replacement function for std::min
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt>
- /// \details STDMIN was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
- template <class T> inline const T& STDMIN(const T& a, const T& b)
- {
- return b < a ? b : a;
- }
- /// \brief Replacement function for std::max
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt>
- /// \details STDMAX was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
- template <class T> inline const T& STDMAX(const T& a, const T& b)
- {
- return a < b ? b : a;
- }
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4389)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wsign-compare"
- # pragma GCC diagnostic ignored "-Wstrict-overflow"
- # if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000)
- # pragma GCC diagnostic ignored "-Wtautological-compare"
- # elif (CRYPTOPP_GCC_VERSION >= 40300)
- # pragma GCC diagnostic ignored "-Wtype-limits"
- # endif
- #endif
- /// \brief Safe comparison of values that could be negative and incorrectly promoted
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison a and b using <tt>operator<</tt>.
- /// \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1.
- template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b)
- {
- CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0));
- if (sizeof(T1)<=sizeof(T2))
- return b < (T2)a ? (T1)b : a;
- else
- return (T1)b < a ? (T1)b : a;
- }
- /// \brief Tests whether a conversion from -> to is safe to perform
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param from the first value
- /// \param to the second value
- /// \return true if its safe to convert from into to, false otherwise.
- template <class T1, class T2>
- inline bool SafeConvert(T1 from, T2 &to)
- {
- to = static_cast<T2>(from);
- if (from != to || (from > 0) != (to > 0))
- return false;
- return true;
- }
- /// \brief Converts a value to a string
- /// \tparam T class or type
- /// \param value the value to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- template <class T>
- std::string IntToString(T value, unsigned int base = 10)
- {
- // Hack... set the high bit for uppercase.
- const unsigned int HIGH_BIT = (1U << 31);
- const char CH = !!(base & HIGH_BIT) ? 'A' : 'a';
- base &= ~HIGH_BIT;
- CRYPTOPP_ASSERT(base >= 2);
- if (value == 0)
- return "0";
- bool negate = false;
- if (value < 0)
- {
- negate = true;
- value = 0-value; // VC .NET does not like -a
- }
- std::string result;
- while (value > 0)
- {
- T digit = value % base;
- result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result;
- value /= base;
- }
- if (negate)
- result = "-" + result;
- return result;
- }
- /// \brief Converts an unsigned value to a string
- /// \param value the value to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- /// \details this template function specialization was added to suppress
- /// Coverity findings on IntToString() with unsigned types.
- template <> CRYPTOPP_DLL
- std::string IntToString<word64>(word64 value, unsigned int base);
- /// \brief Converts an Integer to a string
- /// \param value the Integer to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- /// \details This is a template specialization of IntToString(). Use it
- /// like IntToString():
- /// <pre>
- /// // Print integer in base 10
- /// Integer n...
- /// std::string s = IntToString(n, 10);
- /// </pre>
- /// \details The string is presented with lowercase letters by default. A
- /// hack is available to switch to uppercase letters without modifying
- /// the function signature.
- /// <pre>
- /// // Print integer in base 16, uppercase letters
- /// Integer n...
- /// const unsigned int UPPER = (1 << 31);
- /// std::string s = IntToString(n, (UPPER | 16));</pre>
- template <> CRYPTOPP_DLL
- std::string IntToString<Integer>(Integer value, unsigned int base);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic pop
- #endif
- #define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue
- // this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack
- #define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
- // these may be faster on other CPUs/compilers
- // #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255)
- // #define GETBYTE(x, y) (((byte *)&(x))[y])
- #define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y)))
- /// \brief Returns the parity of a value
- /// \tparam T class or type
- /// \param value the value to provide the parity
- /// \return 1 if the number 1-bits in the value is odd, 0 otherwise
- template <class T>
- unsigned int Parity(T value)
- {
- for (unsigned int i=8*sizeof(value)/2; i>0; i/=2)
- value ^= value >> i;
- return (unsigned int)value&1;
- }
- /// \brief Returns the number of 8-bit bytes or octets required for a value
- /// \tparam T class or type
- /// \param value the value to test
- /// \return the minimum number of 8-bit bytes or octets required to represent a value
- template <class T>
- unsigned int BytePrecision(const T &value)
- {
- if (!value)
- return 0;
- unsigned int l=0, h=8*sizeof(value);
- while (h-l > 8)
- {
- unsigned int t = (l+h)/2;
- if (value >> t)
- l = t;
- else
- h = t;
- }
- return h/8;
- }
- /// \brief Returns the number of bits required for a value
- /// \tparam T class or type
- /// \param value the value to test
- /// \return the maximum number of bits required to represent a value.
- template <class T>
- unsigned int BitPrecision(const T &value)
- {
- if (!value)
- return 0;
- unsigned int l=0, h=8*sizeof(value);
- while (h-l > 1)
- {
- unsigned int t = (l+h)/2;
- if (value >> t)
- l = t;
- else
- h = t;
- }
- return h;
- }
- /// Determines the number of trailing 0-bits in a value
- /// \param v the 32-bit value to test
- /// \return the number of trailing 0-bits in v, starting at the least significant bit position
- /// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
- /// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
- /// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
- inline unsigned int TrailingZeros(word32 v)
- {
- // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
- // We don't enable for Microsoft because it requires a runtime check.
- // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
- CRYPTOPP_ASSERT(v != 0);
- #if defined(__BMI__)
- return (unsigned int)_tzcnt_u32(v);
- #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
- return (unsigned int)__builtin_ctz(v);
- #elif defined(_MSC_VER) && (_MSC_VER >= 1400)
- unsigned long result;
- _BitScanForward(&result, v);
- return static_cast<unsigned int>(result);
- #else
- // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
- static const int MultiplyDeBruijnBitPosition[32] =
- {
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
- };
- return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27];
- #endif
- }
- /// Determines the number of trailing 0-bits in a value
- /// \param v the 64-bit value to test
- /// \return the number of trailing 0-bits in v, starting at the least significant bit position
- /// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
- /// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
- /// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
- inline unsigned int TrailingZeros(word64 v)
- {
- // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
- // We don't enable for Microsoft because it requires a runtime check.
- // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
- CRYPTOPP_ASSERT(v != 0);
- #if defined(__BMI__) && defined(__x86_64__)
- return (unsigned int)_tzcnt_u64(v);
- #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
- return (unsigned int)__builtin_ctzll(v);
- #elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64))
- unsigned long result;
- _BitScanForward64(&result, v);
- return static_cast<unsigned int>(result);
- #else
- return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32));
- #endif
- }
- /// \brief Truncates the value to the specified number of bits.
- /// \tparam T class or type
- /// \param value the value to truncate or mask
- /// \param bits the number of bits to truncate or mask
- /// \return the value truncated to the specified number of bits, starting at the least
- /// significant bit position
- /// \details This function masks the low-order bits of value and returns the result. The
- /// mask is created with <tt>(1 << bits) - 1</tt>.
- template <class T>
- inline T Crop(T value, size_t bits)
- {
- if (bits < 8*sizeof(value))
- return T(value & ((T(1) << bits) - 1));
- else
- return value;
- }
- /// \brief Returns the number of 8-bit bytes or octets required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of 8-bit bytes or octets required by bitCount
- /// \details BitsToBytes is effectively a ceiling function based on 8-bit bytes.
- inline size_t BitsToBytes(size_t bitCount)
- {
- return ((bitCount+7)/(8));
- }
- /// \brief Returns the number of words required for the specified number of bytes
- /// \param byteCount the number of bytes
- /// \return the minimum number of words required by byteCount
- /// \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>.
- /// <tt>WORD_SIZE</tt> is defined in config.h
- inline size_t BytesToWords(size_t byteCount)
- {
- return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
- }
- /// \brief Returns the number of words required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of words required by bitCount
- /// \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>.
- /// <tt>WORD_BITS</tt> is defined in config.h
- inline size_t BitsToWords(size_t bitCount)
- {
- return ((bitCount+WORD_BITS-1)/(WORD_BITS));
- }
- /// \brief Returns the number of double words required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of double words required by bitCount
- /// \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>.
- /// <tt>WORD_BITS</tt> is defined in config.h
- inline size_t BitsToDwords(size_t bitCount)
- {
- return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS));
- }
- /// Performs an XOR of a buffer with a mask
- /// \param buf the buffer to XOR with the mask
- /// \param mask the mask to XOR with the buffer
- /// \param count the size of the buffers, in bytes
- /// \details The function effectively visits each element in the buffers and performs
- /// <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size.
- CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count);
- /// Performs an XOR of an input buffer with a mask and stores the result in an output buffer
- /// \param output the destination buffer
- /// \param input the source buffer to XOR with the mask
- /// \param mask the mask buffer to XOR with the input buffer
- /// \param count the size of the buffers, in bytes
- /// \details The function effectively visits each element in the buffers and performs
- /// <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size.
- CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count);
- /// \brief Performs a near constant-time comparison of two equally sized buffers
- /// \param buf1 the first buffer
- /// \param buf2 the second buffer
- /// \param count the size of the buffers, in bytes
- /// \details VerifyBufsEqual performs an XOR of the elements in two equally sized
- /// buffers and returns a result based on the XOR operation. A count of 0 returns
- /// true because two empty buffers are considered equal.
- /// \details The function is near constant-time because CPU micro-code timings could
- /// affect the "constant-ness". Calling code is responsible for mitigating timing
- /// attacks if the buffers are not equally sized.
- /// \sa ModPowerOf2
- CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count);
- /// \brief Tests whether a value is a power of 2
- /// \param value the value to test
- /// \return true if value is a power of 2, false otherwise
- /// \details The function creates a mask of <tt>value - 1</tt> and returns the result
- /// of an AND operation compared to 0. If value is 0 or less than 0, then the function
- /// returns false.
- template <class T>
- inline bool IsPowerOf2(const T &value)
- {
- return value > 0 && (value & (value-1)) == 0;
- }
- #if defined(__BMI__)
- template <>
- inline bool IsPowerOf2<word32>(const word32 &value)
- {
- return value > 0 && _blsr_u32(value) == 0;
- }
- # if defined(__x86_64__)
- template <>
- inline bool IsPowerOf2<word64>(const word64 &value)
- {
- return value > 0 && _blsr_u64(value) == 0;
- }
- # endif // __x86_64__
- #endif // __BMI__
- /// \brief Provide the minimum value for a type
- /// \tparam T type of class
- /// \return the minimum value of the type or class
- /// \details NumericLimitsMin() was introduced for Clang at <A
- /// HREF="http://github.com/weidai11/cryptopp/issues/364">Issue 364,
- /// Apple Clang 6.0 and numeric_limits<word128>::max() returns 0</A>.
- /// \details NumericLimitsMin() requires a specialization for <tt>T</tt>,
- /// meaning <tt>std::numeric_limits<T>::is_specialized</tt> must return
- /// <tt>true</tt>. In the case of <tt>word128</tt> Clang did not specialize
- /// <tt>numeric_limits</tt> for the type.
- /// \since Crypto++ 8.1
- template<class T>
- inline T NumericLimitsMin()
- {
- CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
- return (std::numeric_limits<T>::min)();
- }
- /// \brief Provide the maximum value for a type
- /// \tparam T type of class
- /// \return the maximum value of the type or class
- /// \details NumericLimitsMax() was introduced for Clang at <A
- /// HREF="http://github.com/weidai11/cryptopp/issues/364">Issue 364,
- /// Apple Clang 6.0 and numeric_limits<word128>::max() returns 0</A>.
- /// \details NumericLimitsMax() requires a specialization for <tt>T</tt>,
- /// meaning <tt>std::numeric_limits<T>::is_specialized</tt> must return
- /// <tt>true</tt>. In the case of <tt>word128</tt> Clang did not specialize
- /// <tt>numeric_limits</tt> for the type.
- /// \since Crypto++ 8.1
- template<class T>
- inline T NumericLimitsMax()
- {
- CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
- return (std::numeric_limits<T>::max)();
- }
- // NumericLimitsMin and NumericLimitsMax added for word128 types,
- // see http://github.com/weidai11/cryptopp/issues/364
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- template<>
- inline word128 NumericLimitsMin()
- {
- return 0;
- }
- template<>
- inline word128 NumericLimitsMax()
- {
- return (static_cast<word128>(LWORD_MAX) << 64U) | LWORD_MAX;
- }
- #endif
- /// \brief Performs a saturating subtract clamped at 0
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the minuend
- /// \param b the subtrahend
- /// \return the difference produced by the saturating subtract
- /// \details Saturating arithmetic restricts results to a fixed range. Results that are
- /// less than 0 are clamped at 0.
- /// \details Use of saturating arithmetic in places can be advantageous because it can
- /// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
- template <class T1, class T2>
- inline T1 SaturatingSubtract(const T1 &a, const T2 &b)
- {
- // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
- return T1((a > b) ? (a - b) : 0);
- }
- /// \brief Performs a saturating subtract clamped at 1
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the minuend
- /// \param b the subtrahend
- /// \return the difference produced by the saturating subtract
- /// \details Saturating arithmetic restricts results to a fixed range. Results that are
- /// less than 1 are clamped at 1.
- /// \details Use of saturating arithmetic in places can be advantageous because it can
- /// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
- template <class T1, class T2>
- inline T1 SaturatingSubtract1(const T1 &a, const T2 &b)
- {
- // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
- return T1((a > b) ? (a - b) : 1);
- }
- /// \brief Reduces a value to a power of 2
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the first value
- /// \param b the second value
- /// \return ModPowerOf2() returns <tt>a & (b-1)</tt>. <tt>b</tt> must be a power of 2.
- /// Use IsPowerOf2() to determine if <tt>b</tt> is a suitable candidate.
- /// \sa IsPowerOf2
- template <class T1, class T2>
- inline T2 ModPowerOf2(const T1 &a, const T2 &b)
- {
- CRYPTOPP_ASSERT(IsPowerOf2(b));
- // Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW)
- // Visual Studio and /RTCc warning, https://docs.microsoft.com/en-us/cpp/build/reference/rtc-run-time-error-checks
- return T2(a & SaturatingSubtract(b,1U));
- }
- /// \brief Rounds a value down to a multiple of a second value
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param n the value to reduce
- /// \param m the value to reduce <tt>n</tt> to a multiple
- /// \return the possibly unmodified value \n
- /// \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns
- /// the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned.
- /// \note <tt>T1</tt> and <tt>T2</tt> should be unsigned arithmetic types. If <tt>T1</tt> or
- /// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
- /// debug builds when practical, but allows you to perform the operation in release builds.
- template <class T1, class T2>
- inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m)
- {
- // http://github.com/weidai11/cryptopp/issues/364
- #if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
- CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
- CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
- #endif
- CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
- CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
- if (IsPowerOf2(m))
- return n - ModPowerOf2(n, m);
- else
- return n - n%m;
- }
- /// \brief Rounds a value up to a multiple of a second value
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param n the value to reduce
- /// \param m the value to reduce <tt>n</tt> to a multiple
- /// \return the possibly unmodified value \n
- /// \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function
- /// returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is
- /// returned. If the value n would overflow, then an InvalidArgument exception is thrown.
- /// \note <tt>T1</tt> and <tt>T2</tt> should be unsigned arithmetic types. If <tt>T1</tt> or
- /// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
- /// debug builds when practical, but allows you to perform the operation in release builds.
- template <class T1, class T2>
- inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m)
- {
- // http://github.com/weidai11/cryptopp/issues/364
- #if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
- CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
- CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
- #endif
- CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
- CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
- if (NumericLimitsMax<T1>() - m + 1 < n)
- throw InvalidArgument("RoundUpToMultipleOf: integer overflow");
- return RoundDownToMultipleOf(T1(n+m-1), m);
- }
- /// \brief Returns the minimum alignment requirements of a type
- /// \tparam T class or type
- /// \return the minimum alignment requirements of <tt>T</tt>, in bytes
- /// \details Internally the function calls C++11's <tt>alignof</tt> if
- /// available. If not available, then the function uses compiler
- /// specific extensions such as <tt>__alignof</tt> and <tt>_alignof_</tt>.
- /// If an extension is not available, then the function uses
- /// <tt>sizeof(T)</tt>.
- template <class T>
- inline unsigned int GetAlignmentOf()
- {
- #if defined(CRYPTOPP_CXX11_ALIGNOF)
- return alignof(T);
- #elif (_MSC_VER >= 1300)
- return __alignof(T);
- #elif defined(__GNUC__)
- return __alignof__(T);
- #elif defined(__SUNPRO_CC)
- return __alignof__(T);
- #elif defined(__IBM_ALIGNOF__)
- return __alignof__(T);
- #elif CRYPTOPP_BOOL_SLOW_WORD64
- return UnsignedMin(4U, sizeof(T));
- #else
- return sizeof(T);
- #endif
- }
- /// \brief Determines whether ptr is aligned to a minimum value
- /// \param ptr the pointer being checked for alignment
- /// \param alignment the alignment value to test the pointer against
- /// \return true if <tt>ptr</tt> is aligned on at least <tt>alignment</tt>
- /// boundary, false otherwise
- /// \details Internally the function tests whether alignment is 1. If so,
- /// the function returns true. If not, then the function effectively
- /// performs a modular reduction and returns true if the residue is 0.
- inline bool IsAlignedOn(const void *ptr, unsigned int alignment)
- {
- const uintptr_t x = reinterpret_cast<uintptr_t>(ptr);
- return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2(x, alignment) == 0 : x % alignment == 0);
- }
- /// \brief Determines whether ptr is minimally aligned
- /// \tparam T class or type
- /// \param ptr the pointer to check for alignment
- /// \return true if <tt>ptr</tt> is aligned to at least <tt>T</tt>
- /// boundary, false otherwise
- /// \details Internally the function calls IsAlignedOn with a second
- /// parameter of GetAlignmentOf<T>.
- template <class T>
- inline bool IsAligned(const void *ptr)
- {
- return IsAlignedOn(ptr, GetAlignmentOf<T>());
- }
- #if (CRYPTOPP_LITTLE_ENDIAN)
- typedef LittleEndian NativeByteOrder;
- #elif (CRYPTOPP_BIG_ENDIAN)
- typedef BigEndian NativeByteOrder;
- #else
- # error "Unable to determine endianness"
- #endif
- /// \brief Returns NativeByteOrder as an enumerated ByteOrder value
- /// \return LittleEndian if the native byte order is little-endian,
- /// and BigEndian if the native byte order is big-endian
- /// \details NativeByteOrder is a typedef depending on the platform.
- /// If CRYPTOPP_LITTLE_ENDIAN is set in config.h, then
- /// GetNativeByteOrder returns LittleEndian. If CRYPTOPP_BIG_ENDIAN
- /// is set, then GetNativeByteOrder returns BigEndian.
- /// \note There are other byte orders besides little- and big-endian,
- /// and they include bi-endian and PDP-endian. If a system is neither
- /// little-endian nor big-endian, then a compile time error occurs.
- inline ByteOrder GetNativeByteOrder()
- {
- return NativeByteOrder::ToEnum();
- }
- /// \brief Determines whether order follows native byte ordering
- /// \param order the ordering being tested against native byte ordering
- /// \return true if order follows native byte ordering, false otherwise
- inline bool NativeByteOrderIs(ByteOrder order)
- {
- return order == GetNativeByteOrder();
- }
- /// \brief Returns the direction the cipher is being operated
- /// \tparam T class or type
- /// \param obj the cipher object being queried
- /// \return ENCRYPTION if the cipher obj is being operated in its forward direction,
- /// DECRYPTION otherwise
- /// \details A cipher can be operated in a "forward" direction (encryption) or a "reverse"
- /// direction (decryption). The operations do not have to be symmetric, meaning a second
- /// application of the transformation does not necessarily return the original message.
- /// That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not
- /// equal <tt>D(D(m))</tt>.
- template <class T>
- inline CipherDir GetCipherDir(const T &obj)
- {
- return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION;
- }
- /// \brief Performs an addition with carry on a block of bytes
- /// \param inout the byte block
- /// \param size the size of the block, in bytes
- /// \details Performs an addition with carry by adding 1 on a block of bytes starting at the least
- /// significant byte. Once carry is 0, the function terminates and returns to the caller.
- /// \note The function is not constant time because it stops processing when the carry is 0.
- inline void IncrementCounterByOne(byte *inout, unsigned int size)
- {
- CRYPTOPP_ASSERT(inout != NULLPTR);
- unsigned int carry=1;
- while (carry && size != 0)
- {
- // On carry inout[n] equals 0
- carry = ! ++inout[size-1];
- size--;
- }
- }
- /// \brief Performs an addition with carry on a block of bytes
- /// \param output the destination block of bytes
- /// \param input the source block of bytes
- /// \param size the size of the block
- /// \details Performs an addition with carry on a block of bytes starting at the least significant
- /// byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy.
- /// \details The function is close to near-constant time because it operates on all the bytes in the blocks.
- inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size)
- {
- CRYPTOPP_ASSERT(output != NULLPTR);
- CRYPTOPP_ASSERT(input != NULLPTR);
- unsigned int carry=1;
- while (carry && size != 0)
- {
- // On carry output[n] equals 0
- carry = ! (output[size-1] = input[size-1] + 1);
- size--;
- }
- while (size != 0)
- {
- output[size-1] = input[size-1];
- size--;
- }
- }
- /// \brief Performs a branch-less swap of values a and b if condition c is true
- /// \tparam T class or type
- /// \param c the condition to perform the swap
- /// \param a the first value
- /// \param b the second value
- template <class T>
- inline void ConditionalSwap(bool c, T &a, T &b)
- {
- T t = c * (a ^ b);
- a ^= t;
- b ^= t;
- }
- /// \brief Performs a branch-less swap of pointers a and b if condition c is true
- /// \tparam T class or type
- /// \param c the condition to perform the swap
- /// \param a the first pointer
- /// \param b the second pointer
- template <class T>
- inline void ConditionalSwapPointers(bool c, T &a, T &b)
- {
- ptrdiff_t t = size_t(c) * (a - b);
- a -= t;
- b += t;
- }
- // see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
- // and http://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data
- /// \brief Sets each element of an array to 0
- /// \tparam T class or type
- /// \param buf an array of elements
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template <class T>
- void SecureWipeBuffer(T *buf, size_t n)
- {
- // GCC 4.3.2 on Cygwin optimizes away the first store if this
- // loop is done in the forward direction
- volatile T *p = buf+n;
- while (n--)
- *(--p) = 0;
- }
- #if !defined(CRYPTOPP_DISABLE_ASM) && \
- (_MSC_VER >= 1400 || defined(__GNUC__)) && \
- (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)
- /// \brief Sets each byte of an array to 0
- /// \param buf an array of bytes
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(byte *buf, size_t n)
- {
- volatile byte *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosb(reinterpret_cast<byte *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 16-bit element of an array to 0
- /// \param buf an array of 16-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
- {
- volatile word16 *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosw(reinterpret_cast<word16 *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 32-bit element of an array to 0
- /// \param buf an array of 32-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
- {
- volatile word32 *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosd(reinterpret_cast<unsigned long *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 64-bit element of an array to 0
- /// \param buf an array of 64-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
- {
- #if CRYPTOPP_BOOL_X64
- volatile word64 *p = buf;
- # ifdef __GNUC__
- asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- # else
- __stosq(const_cast<word64 *>(p), 0, n);
- # endif
- #else
- SecureWipeBuffer(reinterpret_cast<word32 *>(buf), 2*n);
- #endif
- }
- #endif // CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86
- #if !defined(CRYPTOPP_DISABLE_ASM) && (_MSC_VER >= 1700) && defined(_M_ARM)
- template<> inline void SecureWipeBuffer(byte *buf, size_t n)
- {
- char *p = reinterpret_cast<char*>(buf+n);
- while (n--)
- __iso_volatile_store8(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
- {
- short *p = reinterpret_cast<short*>(buf+n);
- while (n--)
- __iso_volatile_store16(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
- {
- int *p = reinterpret_cast<int*>(buf+n);
- while (n--)
- __iso_volatile_store32(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
- {
- __int64 *p = reinterpret_cast<__int64*>(buf+n);
- while (n--)
- __iso_volatile_store64(--p, 0);
- }
- #endif
- /// \brief Sets each element of an array to 0
- /// \tparam T class or type
- /// \param buf an array of elements
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template <class T>
- inline void SecureWipeArray(T *buf, size_t n)
- {
- if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0)
- SecureWipeBuffer(reinterpret_cast<word64 *>(static_cast<void *>(buf)), n * (sizeof(T)/8));
- else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0)
- SecureWipeBuffer(reinterpret_cast<word32 *>(static_cast<void *>(buf)), n * (sizeof(T)/4));
- else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0)
- SecureWipeBuffer(reinterpret_cast<word16 *>(static_cast<void *>(buf)), n * (sizeof(T)/2));
- else
- SecureWipeBuffer(reinterpret_cast<byte *>(static_cast<void *>(buf)), n * sizeof(T));
- }
- /// \brief Converts a wide character C-string to a multibyte string
- /// \param str C-string consisting of wide characters
- /// \param throwOnError flag indicating the function should throw on error
- /// \return str converted to a multibyte string or an empty string.
- /// \details StringNarrow() converts a wide string to a narrow string using C++ std::wcstombs() under
- /// the executing thread's locale. A locale must be set before using this function, and it can be
- /// set with std::setlocale() if needed. Upon success, the converted string is returned.
- /// \details Upon failure with throwOnError as false, the function returns an empty string. If
- /// throwOnError as true, the function throws an InvalidArgument() exception.
- /// \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8
- /// (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available,
- /// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
- std::string StringNarrow(const wchar_t *str, bool throwOnError = true);
- /// \brief Converts a multibyte C-string to a wide character string
- /// \param str C-string consisting of wide characters
- /// \param throwOnError flag indicating the function should throw on error
- /// \return str converted to a multibyte string or an empty string.
- /// \details StringWiden() converts a narrow string to a wide string using C++ std::mbstowcs() under
- /// the executing thread's locale. A locale must be set before using this function, and it can be
- /// set with std::setlocale() if needed. Upon success, the converted string is returned.
- /// \details Upon failure with throwOnError as false, the function returns an empty string. If
- /// throwOnError as true, the function throws an InvalidArgument() exception.
- /// \note If you try to convert, say, the Chinese character for "bone" from UTF-8 (0xE9 0xAA 0xA8)
- /// to UTF-16 (0x9AA8), then you must ensure the locale is available. If the locale is not available,
- /// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
- std::wstring StringWiden(const char *str, bool throwOnError = true);
- // ************** rotate functions ***************
- /// \brief Performs a left rotate
- /// \tparam R the number of bit positions to rotate the value
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount R is outside the range.
- /// \details Use rotlConstant when the rotate amount is constant. The template function was added
- /// because Clang did not propagate the constant when passed as a function parameter. Clang's
- /// need for a constexpr meant rotlFixed failed to compile on occasion.
- /// \note rotlConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 6.0
- template <unsigned int R, class T> inline T rotlConstant(T x)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(R) < THIS_SIZE);
- return T((x<<R)|(x>>(-R&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam R the number of bit positions to rotate the value
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount R is outside the range.
- /// \details Use rotrConstant when the rotate amount is constant. The template function was added
- /// because Clang did not propagate the constant when passed as a function parameter. Clang's
- /// need for a constexpr meant rotrFixed failed to compile on occasion.
- /// \note rotrConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- template <unsigned int R, class T> inline T rotrConstant(T x)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(R) < THIS_SIZE);
- return T((x >> R)|(x<<(-R&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount y is outside the range.
- /// \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts. New code should use <tt>rotlConstant</tt>, which accepts the rotate amount as a
- /// template parameter.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 6.0
- template <class T> inline T rotlFixed(T x, unsigned int y)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x<<y)|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount y is outside the range.
- /// \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts. New code should use <tt>rotrConstant</tt>, which accepts the rotate amount as a
- /// template parameter.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrFixed(T x, unsigned int y)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x >> y)|(x<<(-y&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount y is outside the range.
- /// \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotlVariable(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x<<y)|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount y is outside the range.
- /// \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrVariable(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x>>y)|(x<<(-y&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotlMod(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- return T((x<<(y&MASK))|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrMod(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- return T((x>>(y&MASK))|(x<<(-y&MASK)));
- }
- #ifdef _MSC_VER
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _lrotl(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _lrotr(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _lrotl(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _lrotr(x, static_cast<byte>(y));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
- {
- y %= 8*sizeof(x);
- return _lrotl(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
- {
- y %= 8*sizeof(x);
- return _lrotr(x, static_cast<byte>(y));
- }
- #endif // #ifdef _MSC_VER
- #if (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- // Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotl64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _rotl64(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlMod<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotl64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrMod<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- #endif // #if _MSC_VER >= 1310
- #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
- // Intel C++ Compiler 10.0 gives undefined externals with these
- template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y)
- {
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y)
- {
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotlMod<word16>(word16 x, unsigned int y)
- {
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
- {
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotr8(x, static_cast<byte>(y));
- }
- template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
- {
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
- {
- return _rotr8(x, static_cast<byte>(y));
- }
- template<> inline byte rotlMod<byte>(byte x, unsigned int y)
- {
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrMod<byte>(byte x, unsigned int y)
- {
- return _rotr8(x, static_cast<byte>(y));
- }
- #endif // #if _MSC_VER >= 1400
- #if (defined(__MWERKS__) && TARGET_CPU_PPC)
- template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return y ? __rlwinm(x,y,0,31) : x;
- }
- template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return y ? __rlwinm(x,32-y,0,31) : x;
- }
- template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return (__rlwnm(x,y,0,31));
- }
- template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return (__rlwnm(x,32-y,0,31));
- }
- template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
- {
- return (__rlwnm(x,y,0,31));
- }
- template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
- {
- return (__rlwnm(x,32-y,0,31));
- }
- #endif // __MWERKS__ && TARGET_CPU_PPC
- // ************** endian reversal ***************
- /// \brief Gets a byte from a value
- /// \param order the ByteOrder of the value
- /// \param value the value to retrieve the byte
- /// \param index the location of the byte to retrieve
- template <class T>
- inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
- {
- if (order == LITTLE_ENDIAN_ORDER)
- return GETBYTE(value, index);
- else
- return GETBYTE(value, sizeof(T)-index-1);
- }
- /// \brief Reverses bytes in a 8-bit value
- /// \param value the 8-bit value to reverse
- /// \note ByteReverse returns the value passed to it since there is nothing to
- /// reverse.
- inline byte ByteReverse(byte value)
- {
- return value;
- }
- /// \brief Reverses bytes in a 16-bit value
- /// \param value the 16-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function
- /// performs a 8-bit rotate on the word16.
- inline word16 ByteReverse(word16 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_16(value);
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_ushort(value);
- #else
- return rotlFixed(value, 8U);
- #endif
- }
- /// \brief Reverses bytes in a 32-bit value
- /// \param value the 32-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word32.
- inline word32 ByteReverse(word32 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_32(value);
- #elif defined(CRYPTOPP_ARM_BYTEREV_AVAILABLE)
- word32 rvalue;
- __asm__ ("rev %0, %1" : "=r" (rvalue) : "r" (value));
- return rvalue;
- #elif defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
- __asm__ ("bswap %0" : "=r" (value) : "0" (value));
- return value;
- #elif defined(__MWERKS__) && TARGET_CPU_PPC
- return (word32)__lwbrx(&value,0);
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_ulong(value);
- #elif CRYPTOPP_FAST_ROTATE(32) && !defined(__xlC__)
- // 5 instructions with rotate instruction, 9 without
- return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
- #else
- // 6 instructions with rotate instruction, 8 without
- value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
- return rotlFixed(value, 16U);
- #endif
- }
- /// \brief Reverses bytes in a 64-bit value
- /// \param value the 64-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word64.
- inline word64 ByteReverse(word64 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_64(value);
- #elif defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
- __asm__ ("bswap %0" : "=r" (value) : "0" (value));
- return value;
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_uint64(value);
- #elif CRYPTOPP_BOOL_SLOW_WORD64
- return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
- #else
- value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
- value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
- return rotlFixed(value, 32U);
- #endif
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Reverses bytes in a 128-bit value
- /// \param value the 128-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word128.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline word128 ByteReverse(word128 value)
- {
- // TODO: speed this up
- return (word128(ByteReverse(word64(value))) << 64) | ByteReverse(word64(value>>64));
- }
- #endif
- /// \brief Reverses bits in a 8-bit value
- /// \param value the 8-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the byte.
- inline byte BitReverse(byte value)
- {
- value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1);
- value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2);
- return rotlFixed(value, 4U);
- }
- /// \brief Reverses bits in a 16-bit value
- /// \param value the 16-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word16.
- inline word16 BitReverse(word16 value)
- {
- #if defined(CRYPTOPP_ARM_BITREV_AVAILABLE)
- // 4 instructions on ARM.
- word32 rvalue;
- __asm__ ("rbit %0, %1" : "=r" (rvalue) : "r" (value));
- return word16(rvalue >> 16);
- #else
- // 15 instructions on ARM.
- value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1);
- value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2);
- value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a 32-bit value
- /// \param value the 32-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word32.
- inline word32 BitReverse(word32 value)
- {
- #if defined(CRYPTOPP_ARM_BITREV_AVAILABLE)
- // 2 instructions on ARM.
- word32 rvalue;
- __asm__ ("rbit %0, %1" : "=r" (rvalue) : "r" (value));
- return rvalue;
- #else
- // 19 instructions on ARM.
- value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1);
- value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2);
- value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a 64-bit value
- /// \param value the 64-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word64.
- inline word64 BitReverse(word64 value)
- {
- #if CRYPTOPP_BOOL_SLOW_WORD64
- return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
- #else
- value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1);
- value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2);
- value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a value
- /// \param value the value to reverse
- /// \details The template overload of BitReverse operates on signed and unsigned values.
- /// Internally the size of T is checked, and then value is cast to a byte,
- /// word16, word32 or word64. After the cast, the appropriate BitReverse
- /// overload is called.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 1.0, word128 since Crypto++ 8.7
- template <class T>
- inline T BitReverse(T value)
- {
- if (sizeof(T) == 1)
- return (T)BitReverse((byte)value);
- else if (sizeof(T) == 2)
- return (T)BitReverse((word16)value);
- else if (sizeof(T) == 4)
- return (T)BitReverse((word32)value);
- else if (sizeof(T) == 8)
- return (T)BitReverse((word64)value);
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- else if (sizeof(T) == 16)
- return (T)BitReverse((word128)value);
- #endif
- else
- {
- CRYPTOPP_ASSERT(0);
- return (T)BitReverse((word64)value);
- }
- }
- /// \brief Reverses bytes in a value depending upon endianness
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param value the value to conditionally reverse
- /// \details Internally, the ConditionalByteReverse calls NativeByteOrderIs.
- /// If order matches native byte order, then the original value is returned.
- /// If not, then ByteReverse is called on the value before returning to the caller.
- template <class T>
- inline T ConditionalByteReverse(ByteOrder order, T value)
- {
- return NativeByteOrderIs(order) ? value : ByteReverse(value);
- }
- /// \brief Reverses bytes in an element from an array of elements
- /// \tparam T the class or type
- /// \param out the output array of elements
- /// \param in the input array of elements
- /// \param byteCount the total number of bytes in the array
- /// \details Internally, ByteReverse visits each element in the in array
- /// calls ByteReverse on it, and writes the result to out.
- /// \details ByteReverse does not process tail byes, or bytes that are
- /// not part of a full element. If T is int (and int is 4 bytes), then
- /// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
- /// reversed.
- /// \details The following program should help illustrate the behavior.
- /// <pre>vector<word32> v1, v2;
- ///
- /// v1.push_back(1);
- /// v1.push_back(2);
- /// v1.push_back(3);
- /// v1.push_back(4);
- ///
- /// v2.resize(v1.size());
- /// ByteReverse<word32>(&v2[0], &v1[0], 16);
- ///
- /// cout << "V1: ";
- /// for(unsigned int i = 0; i < v1.size(); i++)
- /// cout << std::hex << v1[i] << " ";
- /// cout << endl;
- ///
- /// cout << "V2: ";
- /// for(unsigned int i = 0; i < v2.size(); i++)
- /// cout << std::hex << v2[i] << " ";
- /// cout << endl;</pre>
- /// The program above results in the following output.
- /// <pre>V1: 00000001 00000002 00000003 00000004
- /// V2: 01000000 02000000 03000000 04000000</pre>
- /// \sa ConditionalByteReverse
- template <class T>
- void ByteReverse(T *out, const T *in, size_t byteCount)
- {
- // Alignment check due to Issues 690
- CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0);
- CRYPTOPP_ASSERT(IsAligned<T>(in));
- CRYPTOPP_ASSERT(IsAligned<T>(out));
- size_t count = byteCount/sizeof(T);
- for (size_t i=0; i<count; i++)
- out[i] = ByteReverse(in[i]);
- }
- /// \brief Conditionally reverses bytes in an element from an array of elements
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param out the output array of elements
- /// \param in the input array of elements
- /// \param byteCount the byte count of the arrays
- /// \details ConditionalByteReverse visits each element in the in array
- /// calls ByteReverse on it depending on the desired endianness, and writes the result to out.
- /// \details ByteReverse does not process tail byes, or bytes that are
- /// not part of a full element. If T is int (and int is 4 bytes), then
- /// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
- /// reversed.
- /// \sa ByteReverse
- template <class T>
- inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
- {
- if (!NativeByteOrderIs(order))
- ByteReverse(out, in, byteCount);
- else if (in != out)
- memcpy_s(out, byteCount, in, byteCount);
- }
- /// \brief Copy bytes in a buffer to an array of elements in big-endian order
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param out the output array of elements
- /// \param outlen the byte count of the array
- /// \param in the input array of elements
- /// \param inlen the byte count of the array
- template <class T>
- inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
- {
- const size_t U = sizeof(T);
- CRYPTOPP_ASSERT(inlen <= outlen*U);
- memcpy_s(out, outlen*U, in, inlen);
- memset_z((byte *)out+inlen, 0, outlen*U-inlen);
- ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
- }
- /// \brief Retrieve a byte from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a byte value.
- /// \since Crypto++ 1.0
- inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *unused)
- {
- CRYPTOPP_UNUSED(order); CRYPTOPP_UNUSED(unused);
- return block[0];
- }
- /// \brief Retrieve a word16 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word16 value.
- /// \since Crypto++ 1.0
- inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ? block[1] | (block[0] << 8)
- : block[0] | (block[1] << 8);
- }
- /// \brief Retrieve a word32 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word32 value.
- /// \since Crypto++ 1.0
- inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
- : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
- }
- /// \brief Retrieve a word64 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word64 value.
- /// \since Crypto++ 1.0
- inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ?
- (word64(block[7]) |
- (word64(block[6]) << 8) |
- (word64(block[5]) << 16) |
- (word64(block[4]) << 24) |
- (word64(block[3]) << 32) |
- (word64(block[2]) << 40) |
- (word64(block[1]) << 48) |
- (word64(block[0]) << 56))
- :
- (word64(block[0]) |
- (word64(block[1]) << 8) |
- (word64(block[2]) << 16) |
- (word64(block[3]) << 24) |
- (word64(block[4]) << 32) |
- (word64(block[5]) << 40) |
- (word64(block[6]) << 48) |
- (word64(block[7]) << 56));
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Retrieve a word128 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word128 value.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline word128 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word128 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ?
- (word128(block[15]) |
- (word128(block[14]) << 8) |
- (word128(block[13]) << 16) |
- (word128(block[12]) << 24) |
- (word128(block[11]) << 32) |
- (word128(block[10]) << 40) |
- (word128(block[ 9]) << 48) |
- (word128(block[ 8]) << 56) |
- (word128(block[ 7]) << 64) |
- (word128(block[ 6]) << 72) |
- (word128(block[ 5]) << 80) |
- (word128(block[ 4]) << 88) |
- (word128(block[ 3]) << 96) |
- (word128(block[ 2]) << 104) |
- (word128(block[ 1]) << 112) |
- (word128(block[ 0]) << 120))
- :
- (word128(block[ 0]) |
- (word128(block[ 1]) << 8) |
- (word128(block[ 2]) << 16) |
- (word128(block[ 3]) << 24) |
- (word128(block[ 4]) << 32) |
- (word128(block[ 5]) << 40) |
- (word128(block[ 6]) << 48) |
- (word128(block[ 7]) << 56) |
- (word128(block[ 8]) << 64) |
- (word128(block[ 9]) << 72) |
- (word128(block[10]) << 80) |
- (word128(block[11]) << 88) |
- (word128(block[12]) << 96) |
- (word128(block[13]) << 104) |
- (word128(block[14]) << 112) |
- (word128(block[15]) << 120));
- }
- #endif
- /// \brief Write a byte to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value byte value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a byte value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
- {
- CRYPTOPP_UNUSED(order);
- block[0] = static_cast<byte>(xorBlock ? (value ^ xorBlock[0]) : value);
- }
- /// \brief Write a word16 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word16 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word16 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- }
- }
- }
- /// \brief Write a word32 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word32 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word32 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- }
- }
- }
- /// \brief Write a word64 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word64 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word64 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- }
- }
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Write a word128 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word128 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word128 value to an unaligned buffer.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word128 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 8] = xorBlock[ 8] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 9] = xorBlock[ 9] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[10] = xorBlock[10] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[11] = xorBlock[11] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[12] = xorBlock[12] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[13] = xorBlock[13] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[14] = xorBlock[14] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[15] = xorBlock[15] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 8] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 9] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[10] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[11] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[12] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[13] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[14] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[15] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 8] = xorBlock[ 8] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 9] = xorBlock[ 9] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[10] = xorBlock[10] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[11] = xorBlock[11] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[12] = xorBlock[12] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[13] = xorBlock[13] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[14] = xorBlock[14] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[15] = xorBlock[15] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 8] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 9] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[10] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[11] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[12] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[13] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[14] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[15] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- }
- }
- }
- #endif
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param block the byte buffer to be processed
- /// \return the word in the specified byte order
- /// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
- /// will be <tt>0x03020100</tt>.
- /// <pre>
- /// word32 w;
- /// byte buffer[4] = {0,1,2,3};
- /// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
- /// </pre>
- template <class T>
- inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
- {
- CRYPTOPP_UNUSED(assumeAligned);
- T temp = 0;
- if (block != NULLPTR) {std::memcpy(&temp, block, sizeof(T));}
- return ConditionalByteReverse(order, temp);
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param result the word in the specified byte order
- /// \param block the byte buffer to be processed
- /// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
- /// will be <tt>0x03020100</tt>.
- /// <pre>
- /// word32 w;
- /// byte buffer[4] = {0,1,2,3};
- /// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
- /// </pre>
- template <class T>
- inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
- {
- result = GetWord<T>(assumeAligned, order, block);
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param block the destination byte buffer
- /// \param value the word in the specified byte order
- /// \param xorBlock an optional byte buffer to xor
- /// \details PutWord() provides alternate write access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- template <class T>
- inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULLPTR)
- {
- CRYPTOPP_UNUSED(assumeAligned);
- T t1, t2;
- t1 = ConditionalByteReverse(order, value);
- if (xorBlock != NULLPTR) {std::memcpy(&t2, xorBlock, sizeof(T)); t1 ^= t2;}
- if (block != NULLPTR) {std::memcpy(block, &t1, sizeof(T));}
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam A flag indicating alignment
- /// \details GetBlock() provides alternate read access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// Repeatedly applying operator() results in advancing in the block of memory.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt>
- /// will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>.
- /// <pre>
- /// word32 w1, w2;
- /// byte buffer[8] = {0,1,2,3,4,5,6,7};
- /// GetBlock<word32, LittleEndian> block(buffer);
- /// block(w1)(w2);
- /// </pre>
- template <class T, class B, bool A=false>
- class GetBlock
- {
- public:
- /// \brief Construct a GetBlock
- /// \param block the memory block
- GetBlock(const void *block)
- : m_block((const byte *)block) {}
- /// \brief Access a block of memory
- /// \tparam U class or type
- /// \param x the value to read
- /// \return pointer to the remainder of the block after reading x
- template <class U>
- inline GetBlock<T, B, A> & operator()(U &x)
- {
- CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
- x = GetWord<T>(A, B::ToEnum(), m_block);
- m_block += sizeof(T);
- return *this;
- }
- private:
- const byte *m_block;
- };
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam A flag indicating alignment
- /// \details PutBlock() provides alternate write access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// Repeatedly applying operator() results in advancing in the block of memory.
- /// \details An example of writing two word32 values from a block of memory is shown below. After the code
- /// executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>.
- /// <pre>
- /// word32 w1=0x03020100, w2=0x07060504;
- /// byte buffer[8];
- /// PutBlock<word32, LittleEndian> block(NULLPTR, buffer);
- /// block(w1)(w2);
- /// </pre>
- template <class T, class B, bool A=false>
- class PutBlock
- {
- public:
- /// \brief Construct a PutBlock
- /// \param block the memory block
- /// \param xorBlock optional mask
- PutBlock(const void *xorBlock, void *block)
- : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}
- /// \brief Access a block of memory
- /// \tparam U class or type
- /// \param x the value to write
- /// \return pointer to the remainder of the block after writing x
- template <class U>
- inline PutBlock<T, B, A> & operator()(U x)
- {
- PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
- m_block += sizeof(T);
- if (m_xorBlock)
- m_xorBlock += sizeof(T);
- return *this;
- }
- private:
- const byte *m_xorBlock;
- byte *m_block;
- };
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam GA flag indicating alignment for the Get operation
- /// \tparam PA flag indicating alignment for the Put operation
- /// \details GetBlock() provides alternate write access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// \sa GetBlock() and PutBlock().
- template <class T, class B, bool GA=false, bool PA=false>
- struct BlockGetAndPut
- {
- // function needed because of C++ grammatical ambiguity between expression-statements and declarations
- static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
- typedef PutBlock<T, B, PA> Put;
- };
- /// \brief Convert a word to a string
- /// \tparam T class or type
- /// \param value the word to convert
- /// \param order byte order
- /// \return a string representing the value of the word
- template <class T>
- std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
- {
- if (!NativeByteOrderIs(order))
- value = ByteReverse(value);
- return std::string((char *)&value, sizeof(value));
- }
- /// \brief Convert a string to a word
- /// \tparam T class or type
- /// \param str the string to convert
- /// \param order byte order
- /// \return a word representing the value of the string
- template <class T>
- T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
- {
- T value = 0;
- memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
- return NativeByteOrderIs(order) ? value : ByteReverse(value);
- }
- // ************** help remove warning on g++ ***************
- /// \brief Safely shift values when undefined behavior could occur
- /// \tparam overflow boolean flag indicating if overflow is present
- /// \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules.
- /// The class behaves much like a saturating arithmetic class, clamping values rather than allowing
- /// the compiler to remove undefined behavior.
- /// \sa SafeShifter<true>, SafeShifter<false>
- template <bool overflow> struct SafeShifter;
- /// \brief Shifts a value in the presence of overflow
- /// \details the true template parameter indicates overflow would occur.
- /// In this case, SafeShifter clamps the value and returns 0.
- template<> struct SafeShifter<true>
- {
- /// \brief Right shifts a value that overflows
- /// \tparam T class or type
- /// \return 0
- /// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
- /// \sa SafeLeftShift
- template <class T>
- static inline T RightShift(T value, unsigned int bits)
- {
- CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
- return 0;
- }
- /// \brief Left shifts a value that overflows
- /// \tparam T class or type
- /// \return 0
- /// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
- /// \sa SafeRightShift
- template <class T>
- static inline T LeftShift(T value, unsigned int bits)
- {
- CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
- return 0;
- }
- };
- /// \brief Shifts a value in the absence of overflow
- /// \details the false template parameter indicates overflow would not occur.
- /// In this case, SafeShifter returns the shfted value.
- template<> struct SafeShifter<false>
- {
- /// \brief Right shifts a value that does not overflow
- /// \tparam T class or type
- /// \return the shifted value
- /// \details Since <tt>overflow == false</tt>, the shifted value is returned.
- /// \sa SafeLeftShift
- template <class T>
- static inline T RightShift(T value, unsigned int bits)
- {
- return value >> bits;
- }
- /// \brief Left shifts a value that does not overflow
- /// \tparam T class or type
- /// \return the shifted value
- /// \details Since <tt>overflow == false</tt>, the shifted value is returned.
- /// \sa SafeRightShift
- template <class T>
- static inline T LeftShift(T value, unsigned int bits)
- {
- return value << bits;
- }
- };
- /// \brief Safely right shift values when undefined behavior could occur
- /// \tparam bits the number of bit positions to shift the value
- /// \tparam T class or type
- /// \param value the value to right shift
- /// \result the shifted value or 0
- /// \details SafeRightShift safely shifts the value to the right when undefined behavior
- /// could occur under C/C++ rules. SafeRightShift will return the shifted value or 0
- /// if undefined behavior would occur.
- template <unsigned int bits, class T>
- inline T SafeRightShift(T value)
- {
- return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
- }
- /// \brief Safely left shift values when undefined behavior could occur
- /// \tparam bits the number of bit positions to shift the value
- /// \tparam T class or type
- /// \param value the value to left shift
- /// \result the shifted value or 0
- /// \details SafeLeftShift safely shifts the value to the left when undefined behavior
- /// could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0
- /// if undefined behavior would occur.
- template <unsigned int bits, class T>
- inline T SafeLeftShift(T value)
- {
- return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
- }
- /// \brief Finds first element not in a range
- /// \tparam InputIt Input iterator type
- /// \tparam T class or type
- /// \param first iterator to first element
- /// \param last iterator to last element
- /// \param value the value used as a predicate
- /// \return iterator to the first element in the range that is not value
- template<typename InputIt, typename T>
- inline InputIt FindIfNot(InputIt first, InputIt last, const T &value) {
- #ifdef CRYPTOPP_CXX11_LAMBDA
- return std::find_if(first, last, [&value](const T &o) {
- return value!=o;
- });
- #else
- return std::find_if(first, last, std::bind2nd(std::not_equal_to<T>(), value));
- #endif
- }
- // ************** use one buffer for multiple data members ***************
- #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate;
- NAMESPACE_END
- #if (CRYPTOPP_MSC_VERSION)
- # pragma warning(pop)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic pop
- #endif
- #endif
|