123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- // modarith.h - originally written and placed in the public domain by Wei Dai
- /// \file modarith.h
- /// \brief Class file for performing modular arithmetic.
- #ifndef CRYPTOPP_MODARITH_H
- #define CRYPTOPP_MODARITH_H
- // implementations are in integer.cpp
- #include "cryptlib.h"
- #include "integer.h"
- #include "algebra.h"
- #include "secblock.h"
- #include "misc.h"
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4231 4275)
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
- /// \brief Ring of congruence classes modulo n
- /// \details This implementation represents each congruence class as
- /// the smallest non-negative integer in that class.
- /// \details <tt>const Element&</tt> returned by member functions are
- /// references to internal data members. Since each object may have
- /// only one such data member for holding results, you should use the
- /// class like this:
- /// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
- /// The following code will produce <i>incorrect</i> results:
- /// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
- /// \details If a ModularArithmetic() is copied or assigned the modulus
- /// is copied, but not the internal data members. The internal data
- /// members are undefined after copy or assignment.
- /// \sa <A HREF="https://cryptopp.com/wiki/Integer">Integer</A> on the
- /// Crypto++ wiki.
- class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
- {
- public:
- typedef int RandomizationParameter;
- typedef Integer Element;
- virtual ~ModularArithmetic() {}
- /// \brief Construct a ModularArithmetic
- /// \param modulus congruence class modulus
- ModularArithmetic(const Integer &modulus = Integer::One())
- : m_modulus(modulus), m_result(static_cast<word>(0), modulus.reg.size()) {}
- /// \brief Copy construct a ModularArithmetic
- /// \param ma other ModularArithmetic
- ModularArithmetic(const ModularArithmetic &ma)
- : AbstractRing<Integer>(ma), m_modulus(ma.m_modulus), m_result(static_cast<word>(0), m_modulus.reg.size()) {}
- /// \brief Assign a ModularArithmetic
- /// \param ma other ModularArithmetic
- ModularArithmetic& operator=(const ModularArithmetic &ma) {
- if (this != &ma)
- {
- m_modulus = ma.m_modulus;
- m_result = Integer(static_cast<word>(0), m_modulus.reg.size());
- }
- return *this;
- }
- /// \brief Construct a ModularArithmetic
- /// \param bt BER encoded ModularArithmetic
- ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
- /// \brief Clone a ModularArithmetic
- /// \return pointer to a new ModularArithmetic
- /// \details Clone effectively copy constructs a new ModularArithmetic. The caller is
- /// responsible for deleting the pointer returned from this method.
- virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
- /// \brief Encodes in DER format
- /// \param bt BufferedTransformation object
- void DEREncode(BufferedTransformation &bt) const;
- /// \brief Encodes element in DER format
- /// \param out BufferedTransformation object
- /// \param a Element to encode
- void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
- /// \brief Decodes element in DER format
- /// \param in BufferedTransformation object
- /// \param a Element to decode
- void BERDecodeElement(BufferedTransformation &in, Element &a) const;
- /// \brief Retrieves the modulus
- /// \return the modulus
- const Integer& GetModulus() const {return m_modulus;}
- /// \brief Sets the modulus
- /// \param newModulus the new modulus
- void SetModulus(const Integer &newModulus)
- {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
- /// \brief Retrieves the representation
- /// \return true if the if the modulus is in Montgomery form for multiplication, false otherwise
- virtual bool IsMontgomeryRepresentation() const {return false;}
- /// \brief Reduces an element in the congruence class
- /// \param a element to convert
- /// \return the reduced element
- /// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which
- /// must convert between representations.
- virtual Integer ConvertIn(const Integer &a) const
- {return a%m_modulus;}
- /// \brief Reduces an element in the congruence class
- /// \param a element to convert
- /// \return the reduced element
- /// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which
- /// must convert between representations.
- virtual Integer ConvertOut(const Integer &a) const
- {return a;}
- /// \brief Divides an element by 2
- /// \param a element to convert
- const Integer& Half(const Integer &a) const;
- /// \brief Compare two elements for equality
- /// \param a first element
- /// \param b second element
- /// \return true if the elements are equal, false otherwise
- /// \details Equal() tests the elements for equality using <tt>a==b</tt>
- bool Equal(const Integer &a, const Integer &b) const
- {return a==b;}
- /// \brief Provides the Identity element
- /// \return the Identity element
- const Integer& Identity() const
- {return Integer::Zero();}
- /// \brief Adds elements in the ring
- /// \param a first element
- /// \param b second element
- /// \return the sum of <tt>a</tt> and <tt>b</tt>
- const Integer& Add(const Integer &a, const Integer &b) const;
- /// \brief TODO
- /// \param a first element
- /// \param b second element
- /// \return TODO
- Integer& Accumulate(Integer &a, const Integer &b) const;
- /// \brief Inverts the element in the ring
- /// \param a first element
- /// \return the inverse of the element
- const Integer& Inverse(const Integer &a) const;
- /// \brief Subtracts elements in the ring
- /// \param a first element
- /// \param b second element
- /// \return the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
- const Integer& Subtract(const Integer &a, const Integer &b) const;
- /// \brief TODO
- /// \param a first element
- /// \param b second element
- /// \return TODO
- Integer& Reduce(Integer &a, const Integer &b) const;
- /// \brief Doubles an element in the ring
- /// \param a the element
- /// \return the element doubled
- /// \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
- const Integer& Double(const Integer &a) const
- {return Add(a, a);}
- /// \brief Retrieves the multiplicative identity
- /// \return the multiplicative identity
- /// \details the base class implementations returns 1.
- const Integer& MultiplicativeIdentity() const
- {return Integer::One();}
- /// \brief Multiplies elements in the ring
- /// \param a the multiplicand
- /// \param b the multiplier
- /// \return the product of a and b
- /// \details Multiply returns <tt>a*b\%n</tt>.
- const Integer& Multiply(const Integer &a, const Integer &b) const
- {return m_result1 = a*b%m_modulus;}
- /// \brief Square an element in the ring
- /// \param a the element
- /// \return the element squared
- /// \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
- const Integer& Square(const Integer &a) const
- {return m_result1 = a.Squared()%m_modulus;}
- /// \brief Determines whether an element is a unit in the ring
- /// \param a the element
- /// \return true if the element is a unit after reduction, false otherwise.
- bool IsUnit(const Integer &a) const
- {return Integer::Gcd(a, m_modulus).IsUnit();}
- /// \brief Calculate the multiplicative inverse of an element in the ring
- /// \param a the element
- /// \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
- /// provide a InverseMod member function.
- const Integer& MultiplicativeInverse(const Integer &a) const
- {return m_result1 = a.InverseMod(m_modulus);}
- /// \brief Divides elements in the ring
- /// \param a the dividend
- /// \param b the divisor
- /// \return the quotient
- /// \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
- const Integer& Divide(const Integer &a, const Integer &b) const
- {return Multiply(a, MultiplicativeInverse(b));}
- /// \brief TODO
- /// \param x first element
- /// \param e1 first exponent
- /// \param y second element
- /// \param e2 second exponent
- /// \return TODO
- Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
- /// \brief Exponentiates a base to multiple exponents in the ring
- /// \param results an array of Elements
- /// \param base the base to raise to the exponents
- /// \param exponents an array of exponents
- /// \param exponentsCount the number of exponents in the array
- /// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
- /// result at the respective position in the results array.
- /// \details SimultaneousExponentiate() must be implemented in a derived class.
- /// \pre <tt>COUNTOF(results) == exponentsCount</tt>
- /// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
- void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
- /// \brief Provides the maximum bit size of an element in the ring
- /// \return maximum bit size of an element
- unsigned int MaxElementBitLength() const
- {return (m_modulus-1).BitCount();}
- /// \brief Provides the maximum byte size of an element in the ring
- /// \return maximum byte size of an element
- unsigned int MaxElementByteLength() const
- {return (m_modulus-1).ByteCount();}
- /// \brief Provides a random element in the ring
- /// \param rng RandomNumberGenerator used to generate material
- /// \param ignore_for_now unused
- /// \return a random element that is uniformly distributed
- /// \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive.
- /// The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng,
- /// Element min, Element max)</tt>.
- Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &ignore_for_now = 0) const
- // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
- {
- CRYPTOPP_UNUSED(ignore_for_now);
- return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ;
- }
- /// \brief Compares two ModularArithmetic for equality
- /// \param rhs other ModularArithmetic
- /// \return true if this is equal to the other, false otherwise
- /// \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>.
- bool operator==(const ModularArithmetic &rhs) const
- {return m_modulus == rhs.m_modulus;}
- static const RandomizationParameter DefaultRandomizationParameter;
- private:
- // TODO: Clang on OS X needs a real operator=.
- // Squash warning on missing assignment operator.
- // ModularArithmetic& operator=(const ModularArithmetic &ma);
- protected:
- Integer m_modulus;
- mutable Integer m_result, m_result1;
- };
- // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
- /// \brief Performs modular arithmetic in Montgomery representation for increased speed
- /// \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
- /// <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
- /// \details <tt>const Element&</tt> returned by member functions are references to
- /// internal data members. Since each object may have only one such data member for holding
- /// results, the following code will produce incorrect results:
- /// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
- /// But this should be fine:
- /// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
- class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
- {
- public:
- virtual ~MontgomeryRepresentation() {}
- /// \brief Construct a MontgomeryRepresentation
- /// \param modulus congruence class modulus
- /// \note The modulus must be odd.
- MontgomeryRepresentation(const Integer &modulus);
- /// \brief Clone a MontgomeryRepresentation
- /// \return pointer to a new MontgomeryRepresentation
- /// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is
- /// responsible for deleting the pointer returned from this method.
- virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
- bool IsMontgomeryRepresentation() const {return true;}
- Integer ConvertIn(const Integer &a) const
- {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
- Integer ConvertOut(const Integer &a) const;
- const Integer& MultiplicativeIdentity() const
- {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
- const Integer& Multiply(const Integer &a, const Integer &b) const;
- const Integer& Square(const Integer &a) const;
- const Integer& MultiplicativeInverse(const Integer &a) const;
- Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
- {return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
- void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
- {AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
- private:
- Integer m_u;
- mutable IntegerSecBlock m_workspace;
- };
- NAMESPACE_END
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #endif
|