123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- // nbtheory.h - originally written and placed in the public domain by Wei Dai
- /// \file nbtheory.h
- /// \brief Classes and functions for number theoretic operations
- #ifndef CRYPTOPP_NBTHEORY_H
- #define CRYPTOPP_NBTHEORY_H
- #include "cryptlib.h"
- #include "integer.h"
- #include "algparam.h"
- NAMESPACE_BEGIN(CryptoPP)
- /// \brief The Small Prime table
- /// \details GetPrimeTable obtains pointer to small prime table and provides the size of the table.
- CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size);
- // ************ primality testing ****************
- /// \brief Generates a provable prime
- /// \param rng a RandomNumberGenerator to produce random material
- /// \param bits the number of bits in the prime number
- /// \return Integer() meeting Maurer's tests for primality
- CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
- /// \brief Generates a provable prime
- /// \param rng a RandomNumberGenerator to produce random material
- /// \param bits the number of bits in the prime number
- /// \return Integer() meeting Mihailescu's tests for primality
- /// \details Mihailescu's methods performs a search using algorithmic progressions.
- CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
- /// \brief Tests whether a number is a small prime
- /// \param p a candidate prime to test
- /// \return true if p is a small prime, false otherwise
- /// \details Internally, the library maintains a table of the first 32719 prime numbers
- /// in sorted order. IsSmallPrime searches the table and returns true if p is
- /// in the table.
- CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p);
- /// \brief Tests whether a number is divisible by a small prime
- /// \return true if p is divisible by some prime less than bound.
- /// \details TrialDivision() returns <tt>true</tt> if <tt>p</tt> is divisible by some prime less
- /// than <tt>bound</tt>. <tt>bound</tt> should not be greater than the largest entry in the
- /// prime table, which is 32719.
- CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound);
- /// \brief Tests whether a number is divisible by a small prime
- /// \return true if p is NOT divisible by small primes.
- /// \details SmallDivisorsTest() returns <tt>true</tt> if <tt>p</tt> is NOT divisible by some
- /// prime less than 32719.
- CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p);
- /// \brief Determine if a number is probably prime
- /// \param n the number to test
- /// \param b the base to exponentiate
- /// \return true if the number n is probably prime, false otherwise.
- /// \details IsFermatProbablePrime raises <tt>b</tt> to the <tt>n-1</tt> power and checks if
- /// the result is congruent to 1 modulo <tt>n</tt>.
- /// \details These is no reason to use IsFermatProbablePrime, use IsStrongProbablePrime or
- /// IsStrongLucasProbablePrime instead.
- /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime
- CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b);
- /// \brief Determine if a number is probably prime
- /// \param n the number to test
- /// \return true if the number n is probably prime, false otherwise.
- /// \details These is no reason to use IsLucasProbablePrime, use IsStrongProbablePrime or
- /// IsStrongLucasProbablePrime instead.
- /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime
- CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n);
- /// \brief Determine if a number is probably prime
- /// \param n the number to test
- /// \param b the base to exponentiate
- /// \return true if the number n is probably prime, false otherwise.
- CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b);
- /// \brief Determine if a number is probably prime
- /// \param n the number to test
- /// \return true if the number n is probably prime, false otherwise.
- CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n);
- /// \brief Determine if a number is probably prime
- /// \param rng a RandomNumberGenerator to produce random material
- /// \param n the number to test
- /// \param rounds the number of tests to perform
- /// \details This is the Rabin-Miller primality test, i.e. repeating the strong probable prime
- /// test for several rounds with random bases
- /// \sa <A HREF="https://crypto.stackexchange.com/q/17707/10496">Trial divisions before
- /// Miller-Rabin checks?</A> on Crypto Stack Exchange
- CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds);
- /// \brief Verifies a number is probably prime
- /// \param p a candidate prime to test
- /// \return true if p is a probable prime, false otherwise
- /// \details IsPrime() is suitable for testing candidate primes when creating them. Internally,
- /// IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime().
- CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p);
- /// \brief Verifies a number is probably prime
- /// \param rng a RandomNumberGenerator for randomized testing
- /// \param p a candidate prime to test
- /// \param level the level of thoroughness of testing
- /// \return true if p is a strong probable prime, false otherwise
- /// \details VerifyPrime() is suitable for testing candidate primes created by others. Internally,
- /// VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candidate passes and
- /// level is greater than 1, then 10 round RabinMillerTest() primality testing is performed.
- CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);
- /// \brief Application callback to signal suitability of a cabdidate prime
- class CRYPTOPP_DLL PrimeSelector
- {
- public:
- virtual ~PrimeSelector() {}
- const PrimeSelector *GetSelectorPointer() const {return this;}
- virtual bool IsAcceptable(const Integer &candidate) const =0;
- };
- /// \brief Finds a random prime of special form
- /// \param p an Integer reference to receive the prime
- /// \param max the maximum value
- /// \param equiv the equivalence class based on the parameter mod
- /// \param mod the modulus used to reduce the equivalence class
- /// \param pSelector pointer to a PrimeSelector function for the application to signal suitability
- /// \return true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime()
- /// returns false, then no such prime exists and the value of p is undefined
- /// \details FirstPrime() uses a fast sieve to find the first probable prime
- /// in <tt>{x | p<=x<=max and x%mod==equiv}</tt>
- CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);
- CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max);
- CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength);
- // ********** other number theoretic functions ************
- /// \brief Calculate the greatest common divisor
- /// \param a the first term
- /// \param b the second term
- /// \return the greatest common divisor if one exists, 0 otherwise.
- inline Integer GCD(const Integer &a, const Integer &b)
- {return Integer::Gcd(a,b);}
- /// \brief Determine relative primality
- /// \param a the first term
- /// \param b the second term
- /// \return true if <tt>a</tt> and <tt>b</tt> are relatively prime, false otherwise.
- inline bool RelativelyPrime(const Integer &a, const Integer &b)
- {return Integer::Gcd(a,b) == Integer::One();}
- /// \brief Calculate the least common multiple
- /// \param a the first term
- /// \param b the second term
- /// \return the least common multiple of <tt>a</tt> and <tt>b</tt>.
- inline Integer LCM(const Integer &a, const Integer &b)
- {return a/Integer::Gcd(a,b)*b;}
- /// \brief Calculate multiplicative inverse
- /// \param a the number to test
- /// \param b the modulus
- /// \return an Integer <tt>(a ^ -1) % n</tt> or 0 if none exists.
- /// \details EuclideanMultiplicativeInverse returns the multiplicative inverse of the Integer
- /// <tt>*a</tt> modulo the Integer <tt>b</tt>. If no Integer exists then Integer 0 is returned.
- inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
- {return a.InverseMod(b);}
- /// \brief Chinese Remainder Theorem
- /// \param xp the first number, mod p
- /// \param p the first prime modulus
- /// \param xq the second number, mod q
- /// \param q the second prime modulus
- /// \param u inverse of p mod q
- /// \return the CRT value of the parameters
- /// \details CRT uses the Chinese Remainder Theorem to calculate <tt>x</tt> given
- /// <tt>x mod p</tt> and <tt>x mod q</tt>, and <tt>u</tt> the inverse of <tt>p mod q</tt>.
- CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);
- /// \brief Calculate the Jacobi symbol
- /// \param a the first term
- /// \param b the second term
- /// \return the Jacobi symbol.
- /// \details Jacobi symbols are calculated using the following rules:
- /// -# if <tt>b</tt> is prime, then <tt>Jacobi(a, b)</tt>, then return 0
- /// -# if <tt>a%b</tt>==0 AND <tt>a</tt> is quadratic residue <tt>mod b</tt>, then return 1
- /// -# return -1 otherwise
- /// \details Refer to a number theory book for what Jacobi symbol means when <tt>b</tt> is not prime.
- CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b);
- /// \brief Calculate the Lucas value
- /// \return the Lucas value
- /// \details Lucas() calculates the Lucas function <tt>V_e(p, 1) mod n</tt>.
- CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n);
- /// \brief Calculate the inverse Lucas value
- /// \return the inverse Lucas value
- /// \details InverseLucas() calculates <tt>x</tt> such that <tt>m==Lucas(e, x, p*q)</tt>,
- /// <tt>p q</tt> primes, <tt>u</tt> is inverse of <tt>p mod q</tt>.
- CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);
- /// \brief Modular multiplication
- /// \param x the first term
- /// \param y the second term
- /// \param m the modulus
- /// \return an Integer <tt>(x * y) % m</tt>.
- inline Integer ModularMultiplication(const Integer &x, const Integer &y, const Integer &m)
- {return a_times_b_mod_c(x, y, m);}
- /// \brief Modular exponentiation
- /// \param x the base
- /// \param e the exponent
- /// \param m the modulus
- /// \return an Integer <tt>(a ^ b) % m</tt>.
- inline Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m)
- {return a_exp_b_mod_c(x, e, m);}
- /// \brief Extract a modular square root
- /// \param a the number to extract square root
- /// \param p the prime modulus
- /// \return the modular square root if it exists
- /// \details ModularSquareRoot returns <tt>x</tt> such that <tt>x*x%p == a</tt>, <tt>p</tt> prime
- CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p);
- /// \brief Extract a modular root
- /// \return a modular root if it exists
- /// \details ModularRoot returns <tt>x</tt> such that <tt>a==ModularExponentiation(x, e, p*q)</tt>,
- /// <tt>p</tt> <tt>q</tt> primes, and <tt>e</tt> relatively prime to <tt>(p-1)*(q-1)</tt>,
- /// <tt>dp=d%(p-1)</tt>, <tt>dq=d%(q-1)</tt>, (d is inverse of <tt>e mod (p-1)*(q-1)</tt>)
- /// and <tt>u=inverse of p mod q</tt>.
- CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);
- /// \brief Solve a Modular Quadratic Equation
- /// \param r1 the first residue
- /// \param r2 the second residue
- /// \param a the first coefficient
- /// \param b the second coefficient
- /// \param c the third constant
- /// \param p the prime modulus
- /// \return true if solutions exist
- /// \details SolveModularQuadraticEquation() finds <tt>r1</tt> and <tt>r2</tt> such that <tt>ax^2 +
- /// bx + c == 0 (mod p)</tt> for x in <tt>{r1, r2}</tt>, <tt>p</tt> prime.
- CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);
- /// \brief Estimate work factor
- /// \param bitlength the size of the number, in bits
- /// \return the estimated work factor, in operations
- /// \details DiscreteLogWorkFactor returns log base 2 of estimated number of operations to
- /// calculate discrete log or factor a number.
- CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength);
- /// \brief Estimate work factor
- /// \param bitlength the size of the number, in bits
- /// \return the estimated work factor, in operations
- /// \details FactoringWorkFactor returns log base 2 of estimated number of operations to
- /// calculate discrete log or factor a number.
- CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength);
- // ********************************************************
- /// \brief Generator of prime numbers of special forms
- class CRYPTOPP_DLL PrimeAndGenerator
- {
- public:
- /// \brief Construct a PrimeAndGenerator
- PrimeAndGenerator() {}
- /// \brief Construct a PrimeAndGenerator
- /// \param delta +1 or -1
- /// \param rng a RandomNumberGenerator derived class
- /// \param pbits the number of bits in the prime p
- /// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*q+delta</tt>, where delta is 1 or -1 and q is
- /// also prime. Internally the constructor calls <tt>Generate(delta, rng, pbits, pbits-1)</tt>.
- /// \pre <tt>pbits > 5</tt>
- /// \warning This PrimeAndGenerator() is slow because primes of this form are harder to find.
- PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits)
- {Generate(delta, rng, pbits, pbits-1);}
- /// \brief Construct a PrimeAndGenerator
- /// \param delta +1 or -1
- /// \param rng a RandomNumberGenerator derived class
- /// \param pbits the number of bits in the prime p
- /// \param qbits the number of bits in the prime q
- /// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime.
- /// Internally the constructor calls <tt>Generate(delta, rng, pbits, qbits)</tt>.
- /// \pre <tt>qbits > 4 && pbits > qbits</tt>
- PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
- {Generate(delta, rng, pbits, qbits);}
- /// \brief Generate a Prime and Generator
- /// \param delta +1 or -1
- /// \param rng a RandomNumberGenerator derived class
- /// \param pbits the number of bits in the prime p
- /// \param qbits the number of bits in the prime q
- /// \details Generate() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime.
- void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits);
- /// \brief Retrieve first prime
- /// \return Prime() returns the prime p.
- const Integer& Prime() const {return p;}
- /// \brief Retrieve second prime
- /// \return SubPrime() returns the prime q.
- const Integer& SubPrime() const {return q;}
- /// \brief Retrieve the generator
- /// \return Generator() returns the generator g.
- const Integer& Generator() const {return g;}
- private:
- Integer p, q, g;
- };
- NAMESPACE_END
- #endif
|