12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310 |
- // secblock.h - originally written and placed in the public domain by Wei Dai
- /// \file secblock.h
- /// \brief Classes and functions for secure memory allocations.
- #ifndef CRYPTOPP_SECBLOCK_H
- #define CRYPTOPP_SECBLOCK_H
- #include "config.h"
- #include "allocate.h"
- #include "misc.h"
- #include "stdcpp.h"
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4231 4275 4700)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6011 6386 28193)
- # endif
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- // ************** secure memory allocation ***************
- /// \brief Base class for all allocators used by SecBlock
- /// \tparam T the class or type
- template<class T>
- class AllocatorBase
- {
- public:
- typedef T value_type;
- typedef size_t size_type;
- typedef std::ptrdiff_t difference_type;
- typedef T * pointer;
- typedef const T * const_pointer;
- typedef T & reference;
- typedef const T & const_reference;
- pointer address(reference r) const {return (&r);}
- const_pointer address(const_reference r) const {return (&r); }
- void construct(pointer p, const T& val) {new (p) T(val);}
- void destroy(pointer p) {CRYPTOPP_UNUSED(p); p->~T();}
- /// \brief Returns the maximum number of elements the allocator can provide
- /// \details <tt>ELEMS_MAX</tt> is the maximum number of elements the
- /// <tt>Allocator</tt> can provide. The value of <tt>ELEMS_MAX</tt> is
- /// <tt>SIZE_MAX/sizeof(T)</tt>. <tt>std::numeric_limits</tt> was avoided
- /// due to lack of <tt>constexpr</tt>-ness in C++03 and below.
- /// \note In C++03 and below <tt>ELEMS_MAX</tt> is a static data member of type
- /// <tt>size_type</tt>. In C++11 and above <tt>ELEMS_MAX</tt> is an <tt>enum</tt>
- /// inheriting from <tt>size_type</tt>. In both cases <tt>ELEMS_MAX</tt> can be
- /// used before objects are fully constructed, and it does not suffer the
- /// limitations of class methods like <tt>max_size</tt>.
- /// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
- /// \since Crypto++ 6.0
- #if defined(CRYPTOPP_DOXYGEN_PROCESSING)
- static const size_type ELEMS_MAX = ...;
- #elif defined(_MSC_VER) && (_MSC_VER <= 1400)
- static const size_type ELEMS_MAX = (~(size_type)0)/sizeof(T);
- #elif defined(CRYPTOPP_CXX11_STRONG_ENUM)
- enum : size_type {ELEMS_MAX = SIZE_MAX/sizeof(T)};
- #else
- static const size_type ELEMS_MAX = SIZE_MAX/sizeof(T);
- #endif
- /// \brief Returns the maximum number of elements the allocator can provide
- /// \return the maximum number of elements the allocator can provide
- /// \details Internally, preprocessor macros are used rather than std::numeric_limits
- /// because the latter is not a constexpr. Some compilers, like Clang, do not
- /// optimize it well under all circumstances. Compilers like GCC, ICC and MSVC appear
- /// to optimize it well in either form.
- CRYPTOPP_CONSTEXPR size_type max_size() const {return ELEMS_MAX;}
- #if defined(__SUNPRO_CC)
- // https://github.com/weidai11/cryptopp/issues/770
- // and https://stackoverflow.com/q/53999461/608639
- CRYPTOPP_CONSTEXPR size_type max_size(size_type n) const {return SIZE_MAX/n;}
- #endif
- #if defined(CRYPTOPP_CXX11_VARIADIC_TEMPLATES) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Constructs a new V using variadic arguments
- /// \tparam V the type to be forwarded
- /// \tparam Args the arguments to be forwarded
- /// \param ptr pointer to type V
- /// \param args variadic arguments
- /// \details This is a C++11 feature. It is available when CRYPTOPP_CXX11_VARIADIC_TEMPLATES
- /// is defined. The define is controlled by compiler versions detected in config.h.
- template<typename V, typename... Args>
- void construct(V* ptr, Args&&... args) {::new ((void*)ptr) V(std::forward<Args>(args)...);}
- /// \brief Destroys an V constructed with variadic arguments
- /// \tparam V the type to be forwarded
- /// \details This is a C++11 feature. It is available when CRYPTOPP_CXX11_VARIADIC_TEMPLATES
- /// is defined. The define is controlled by compiler versions detected in config.h.
- template<typename V>
- void destroy(V* ptr) {if (ptr) ptr->~V();}
- #endif
- protected:
- /// \brief Verifies the allocator can satisfy a request based on size
- /// \param size the size of the allocation, in elements
- /// \throw InvalidArgument
- /// \details CheckSize verifies the number of elements requested is valid.
- /// \details If size is greater than max_size(), then InvalidArgument is thrown.
- /// The library throws InvalidArgument if the size is too large to satisfy.
- /// \details Internally, preprocessor macros are used rather than std::numeric_limits
- /// because the latter is not a constexpr. Some compilers, like Clang, do not
- /// optimize it well under all circumstances. Compilers like GCC, ICC and MSVC appear
- /// to optimize it well in either form.
- /// \details The <tt>sizeof(T) != 1</tt> in the condition attempts to help the
- /// compiler optimize the check for byte types. Coverity findings for
- /// CONSTANT_EXPRESSION_RESULT were generated without it. For byte types,
- /// size never exceeded ELEMS_MAX but the code was not removed.
- /// \note size is the count of elements, and not the number of bytes
- static void CheckSize(size_t size)
- {
- // Squash MSC C4100 warning for size. Also see commit 42b7c4ea5673.
- CRYPTOPP_UNUSED(size);
- // C++ throws std::bad_alloc (C++03) or std::bad_array_new_length (C++11) here.
- if (sizeof(T) != 1 && size > ELEMS_MAX)
- throw InvalidArgument("AllocatorBase: requested size would cause integer overflow");
- }
- };
- #define CRYPTOPP_INHERIT_ALLOCATOR_TYPES(T_type) \
- typedef typename AllocatorBase<T_type>::value_type value_type;\
- typedef typename AllocatorBase<T_type>::size_type size_type;\
- typedef typename AllocatorBase<T_type>::difference_type difference_type;\
- typedef typename AllocatorBase<T_type>::pointer pointer;\
- typedef typename AllocatorBase<T_type>::const_pointer const_pointer;\
- typedef typename AllocatorBase<T_type>::reference reference;\
- typedef typename AllocatorBase<T_type>::const_reference const_reference;
- /// \brief Reallocation function
- /// \tparam T the class or type
- /// \tparam A the class or type's allocator
- /// \param alloc the allocator
- /// \param oldPtr the previous allocation
- /// \param oldSize the size of the previous allocation
- /// \param newSize the new, requested size
- /// \param preserve flag that indicates if the old allocation should be preserved
- /// \note oldSize and newSize are the count of elements, and not the
- /// number of bytes.
- template <class T, class A>
- typename A::pointer StandardReallocate(A& alloc, T *oldPtr, typename A::size_type oldSize, typename A::size_type newSize, bool preserve)
- {
- // Avoid assert on pointer in reallocate. SecBlock regularly uses NULL
- // pointers rather returning non-NULL 0-sized pointers.
- if (oldSize == newSize)
- return oldPtr;
- if (preserve)
- {
- typename A::pointer newPtr = alloc.allocate(newSize, NULLPTR);
- const typename A::size_type copySize = STDMIN(oldSize, newSize) * sizeof(T);
- if (oldPtr && newPtr)
- memcpy_s(newPtr, copySize, oldPtr, copySize);
- if (oldPtr)
- alloc.deallocate(oldPtr, oldSize);
- return newPtr;
- }
- else
- {
- if (oldPtr)
- alloc.deallocate(oldPtr, oldSize);
- return alloc.allocate(newSize, NULLPTR);
- }
- }
- /// \brief Allocates a block of memory with cleanup
- /// \tparam T class or type
- /// \tparam T_Align16 boolean that determines whether allocations should be aligned on a 16-byte boundary
- /// \details If T_Align16 is true, then AllocatorWithCleanup calls AlignedAllocate()
- /// for memory allocations. If T_Align16 is false, then AllocatorWithCleanup() calls
- /// UnalignedAllocate() for memory allocations.
- /// \details Template parameter T_Align16 is effectively controlled by cryptlib.h and mirrors
- /// CRYPTOPP_BOOL_ALIGN16. CRYPTOPP_BOOL_ALIGN16 is often used as the template parameter.
- template <class T, bool T_Align16 = false>
- class AllocatorWithCleanup : public AllocatorBase<T>
- {
- public:
- CRYPTOPP_INHERIT_ALLOCATOR_TYPES(T)
- /// \brief Allocates a block of memory
- /// \param ptr the size of the allocation
- /// \param size the size of the allocation, in elements
- /// \return a memory block
- /// \throw InvalidArgument
- /// \details allocate() first checks the size of the request. If it is non-0
- /// and less than max_size(), then an attempt is made to fulfill the request
- /// using either AlignedAllocate() or UnalignedAllocate(). AlignedAllocate() is
- /// used if T_Align16 is true. UnalignedAllocate() used if T_Align16 is false.
- /// \details This is the C++ *Placement New* operator. ptr is not used, and the
- /// function asserts in Debug builds if ptr is non-NULL.
- /// \sa CallNewHandler() for the methods used to recover from a failed
- /// allocation attempt.
- /// \note size is the count of elements, and not the number of bytes
- pointer allocate(size_type size, const void *ptr = NULLPTR)
- {
- CRYPTOPP_UNUSED(ptr); CRYPTOPP_ASSERT(ptr == NULLPTR);
- this->CheckSize(size);
- if (size == 0)
- return NULLPTR;
- #if CRYPTOPP_BOOL_ALIGN16
- if (T_Align16)
- return reinterpret_cast<pointer>(AlignedAllocate(size*sizeof(T)));
- #endif
- return reinterpret_cast<pointer>(UnalignedAllocate(size*sizeof(T)));
- }
- /// \brief Deallocates a block of memory
- /// \param ptr the pointer for the allocation
- /// \param size the size of the allocation, in elements
- /// \details Internally, SecureWipeArray() is called before deallocating the
- /// memory. Once the memory block is wiped or zeroized, AlignedDeallocate()
- /// or UnalignedDeallocate() is called.
- /// \details AlignedDeallocate() is used if T_Align16 is true.
- /// UnalignedDeallocate() used if T_Align16 is false.
- void deallocate(void *ptr, size_type size)
- {
- // Avoid assert on pointer in deallocate. SecBlock regularly uses NULL
- // pointers rather returning non-NULL 0-sized pointers.
- if (ptr)
- {
- SecureWipeArray(reinterpret_cast<pointer>(ptr), size);
- #if CRYPTOPP_BOOL_ALIGN16
- if (T_Align16)
- return AlignedDeallocate(ptr);
- #endif
- UnalignedDeallocate(ptr);
- }
- }
- /// \brief Reallocates a block of memory
- /// \param oldPtr the previous allocation
- /// \param oldSize the size of the previous allocation
- /// \param newSize the new, requested size
- /// \param preserve flag that indicates if the old allocation should be preserved
- /// \return pointer to the new memory block
- /// \details Internally, reallocate() calls StandardReallocate().
- /// \details If preserve is true, then index 0 is used to begin copying the
- /// old memory block to the new one. If the block grows, then the old array
- /// is copied in its entirety. If the block shrinks, then only newSize
- /// elements are copied from the old block to the new one.
- /// \note oldSize and newSize are the count of elements, and not the
- /// number of bytes.
- pointer reallocate(T *oldPtr, size_type oldSize, size_type newSize, bool preserve)
- {
- CRYPTOPP_ASSERT((oldPtr && oldSize) || !(oldPtr || oldSize));
- return StandardReallocate(*this, oldPtr, oldSize, newSize, preserve);
- }
- /// \brief Template class member Rebind
- /// \tparam V bound class or type
- /// \details Rebind allows a container class to allocate a different type of object
- /// to store elements. For example, a std::list will allocate std::list_node to
- /// store elements in the list.
- /// \details VS.NET STL enforces the policy of "All STL-compliant allocators
- /// have to provide a template class member called rebind".
- template <class V> struct rebind { typedef AllocatorWithCleanup<V, T_Align16> other; };
- #if _MSC_VER >= 1500
- AllocatorWithCleanup() {}
- template <class V, bool A> AllocatorWithCleanup(const AllocatorWithCleanup<V, A> &) {}
- #endif
- };
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<byte>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word16>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word32>;
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word64>;
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word128, true>; // for Integer
- #endif
- #if CRYPTOPP_BOOL_X86
- CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word, true>; // for Integer
- #endif
- /// \brief NULL allocator
- /// \tparam T class or type
- /// \details A NullAllocator is useful for fixed-size, stack based allocations
- /// (i.e., static arrays used by FixedSizeAllocatorWithCleanup).
- /// \details A NullAllocator always returns 0 for max_size(), and always returns
- /// NULL for allocation requests. Though the allocator does not allocate at
- /// runtime, it does perform a secure wipe or zeroization during cleanup.
- template <class T>
- class NullAllocator : public AllocatorBase<T>
- {
- public:
- //LCOV_EXCL_START
- CRYPTOPP_INHERIT_ALLOCATOR_TYPES(T)
- // TODO: should this return NULL or throw bad_alloc? Non-Windows C++ standard
- // libraries always throw. And late mode Windows throws. Early model Windows
- // (circa VC++ 6.0) returned NULL.
- pointer allocate(size_type n, const void* unused = NULLPTR)
- {
- CRYPTOPP_UNUSED(n); CRYPTOPP_UNUSED(unused);
- CRYPTOPP_ASSERT(false); return NULLPTR;
- }
- void deallocate(void *p, size_type n)
- {
- CRYPTOPP_UNUSED(p); CRYPTOPP_UNUSED(n);
- CRYPTOPP_ASSERT(false);
- }
- CRYPTOPP_CONSTEXPR size_type max_size() const {return 0;}
- //LCOV_EXCL_STOP
- };
- /// \brief Static secure memory block with cleanup
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \tparam T_Align16 boolean that determines whether allocations should
- /// be aligned on a 16-byte boundary
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. The class can grow its memory
- /// block at runtime if a suitable allocator is available. If size
- /// grows beyond S and a suitable allocator is available, then the
- /// statically allocated array is obsoleted.
- /// \note This allocator can't be used with standard collections because
- /// they require that all objects of the same allocator type are equivalent.
- template <class T, size_t S, class A = NullAllocator<T>, bool T_Align16 = false>
- class FixedSizeAllocatorWithCleanup : public AllocatorBase<T>
- {
- // The body of FixedSizeAllocatorWithCleanup is provided in the two
- // partial specializations that follow. The two specializations
- // pivot on the boolean template parameter T_Align16.
- };
- /// \brief Static secure memory block with cleanup
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. The class can grow its memory
- /// block at runtime if a suitable allocator is available. If size
- /// grows beyond S and a suitable allocator is available, then the
- /// statically allocated array is obsoleted.
- /// \note This allocator can't be used with standard collections because
- /// they require that all objects of the same allocator type are equivalent.
- template <class T, size_t S, class A>
- class FixedSizeAllocatorWithCleanup<T, S, A, true> : public AllocatorBase<T>
- {
- public:
- CRYPTOPP_INHERIT_ALLOCATOR_TYPES(T)
- /// \brief Constructs a FixedSizeAllocatorWithCleanup
- FixedSizeAllocatorWithCleanup() : m_allocated(false) {}
- /// \brief Allocates a block of memory
- /// \param size the count elements in the memory block
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-based
- /// allocation at compile time. If size is less than or equal to
- /// <tt>S</tt>, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \sa reallocate(), SecBlockWithHint
- pointer allocate(size_type size)
- {
- CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));
- if (size <= S && !m_allocated)
- {
- m_allocated = true;
- return GetAlignedArray();
- }
- else
- return m_fallbackAllocator.allocate(size);
- }
- /// \brief Allocates a block of memory
- /// \param size the count elements in the memory block
- /// \param hint an unused hint
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. If size is less than or equal to
- /// S, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \sa reallocate(), SecBlockWithHint
- pointer allocate(size_type size, const void *hint)
- {
- CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));
- if (size <= S && !m_allocated)
- {
- m_allocated = true;
- return GetAlignedArray();
- }
- else
- return m_fallbackAllocator.allocate(size, hint);
- }
- /// \brief Deallocates a block of memory
- /// \param ptr a pointer to the memory block to deallocate
- /// \param size the count elements in the memory block
- /// \details The memory block is wiped or zeroized before deallocation.
- /// If the statically allocated memory block is active, then no
- /// additional actions are taken after the wipe.
- /// \details If a dynamic memory block is active, then the pointer and
- /// size are passed to the allocator for deallocation.
- void deallocate(void *ptr, size_type size)
- {
- // Avoid assert on pointer in deallocate. SecBlock regularly uses NULL
- // pointers rather returning non-NULL 0-sized pointers.
- if (ptr == GetAlignedArray())
- {
- // If the m_allocated assert fires then the bit twiddling for
- // GetAlignedArray() is probably incorrect for the platform.
- // Be sure to check CRYPTOPP_ALIGN_DATA(8). The platform may
- // not have a way to declaratively align data to 8.
- CRYPTOPP_ASSERT(size <= S);
- CRYPTOPP_ASSERT(m_allocated);
- m_allocated = false;
- SecureWipeArray(reinterpret_cast<pointer>(ptr), size);
- }
- else
- {
- if (ptr)
- m_fallbackAllocator.deallocate(ptr, size);
- }
- }
- /// \brief Reallocates a block of memory
- /// \param oldPtr the previous allocation
- /// \param oldSize the size of the previous allocation
- /// \param newSize the new, requested size
- /// \param preserve flag that indicates if the old allocation should
- /// be preserved
- /// \return pointer to the new memory block
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. If size is less than or equal to
- /// S, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \note size is the count of elements, and not the number of bytes.
- /// \sa reallocate(), SecBlockWithHint
- pointer reallocate(pointer oldPtr, size_type oldSize, size_type newSize, bool preserve)
- {
- if (oldPtr == GetAlignedArray() && newSize <= S)
- {
- CRYPTOPP_ASSERT(oldSize <= S);
- if (oldSize > newSize)
- SecureWipeArray(oldPtr+newSize, oldSize-newSize);
- return oldPtr;
- }
- pointer newPtr = allocate(newSize, NULLPTR);
- if (preserve && newSize)
- {
- const size_type copySize = STDMIN(oldSize, newSize);
- if (newPtr && oldPtr) // GCC analyzer warning
- memcpy_s(newPtr, sizeof(T)*newSize, oldPtr, sizeof(T)*copySize);
- }
- deallocate(oldPtr, oldSize);
- return newPtr;
- }
- CRYPTOPP_CONSTEXPR size_type max_size() const
- {
- return STDMAX(m_fallbackAllocator.max_size(), S);
- }
- private:
- #if CRYPTOPP_BOOL_ALIGN16
- // There be demons here... We cannot use CRYPTOPP_ALIGN_DATA(16)
- // because linkers on 32-bit machines and some 64-bit machines
- // align the stack to 8-bytes or less, and not 16-bytes as
- // requested. We can only count on a smaller alignment. All
- // toolchains tested appear to honor CRYPTOPP_ALIGN_DATA(8). Also
- // see http://stackoverflow.com/a/1468656/608639.
- //
- // The 16-byte alignment is achieved by padding the requested
- // size with extra elements so we have at least 8-bytes of slack
- // to work with. Then the array pointer is moved to achieve a
- // 16-byte alignment.
- //
- // The additional 8-bytes introduces a small secondary issue.
- // The secondary issue is, a large T results in 0 = 8/sizeof(T).
- // The library is OK but users may hit it. So we need to guard
- // for a large T, and that is what the enum and PAD achieves.
- T* GetAlignedArray() {
- // m_array is aligned on 8 byte boundaries due to
- // CRYPTOPP_ALIGN_DATA(8). If m_array%16 is 0, then the buffer
- // is 16-byte aligned and nothing needs to be done. if
- // m_array%16 is 8, then the buffer is not 16-byte aligned and
- // we need to add 8. 8 has that nice symmetric property.
- //
- // If we needed to use CRYPTOPP_ALIGN_DATA(4) due to toolchain
- // limitations, then the calculation would be slightly more
- // costly: ptr = m_array + (16 - (m_array % 16)) % 16;
- CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));
- int off = reinterpret_cast<uintptr_t>(m_array) % 16;
- byte* ptr = reinterpret_cast<byte*>(m_array) + off;
- // Verify the 16-byte alignment. This is the point
- // of these extra gyrations.
- CRYPTOPP_ASSERT(IsAlignedOn(ptr, 16));
- // Verify the lower bound. This is Issue 982/988.
- CRYPTOPP_ASSERT(
- reinterpret_cast<uintptr_t>(ptr) >=
- reinterpret_cast<uintptr_t>(m_array)
- );
- // Verify the upper bound. Allocated array with
- // pad is large enough.
- CRYPTOPP_ASSERT(
- reinterpret_cast<uintptr_t>(ptr+S*sizeof(T)) <=
- reinterpret_cast<uintptr_t>(m_array+(S+PAD))
- );
- // void* to silence Clang warnings
- return reinterpret_cast<T*>(
- static_cast<void*>(ptr)
- );
- }
- // PAD is elements, not bytes, and rounded up to ensure no overflow.
- enum { Q = sizeof(T), PAD = (Q >= 8) ? 1 : (Q >= 4) ? 2 : (Q >= 2) ? 4 : 8 };
- // enum { Q = sizeof(T), PAD = (Q >= 16) ? 1 : (Q >= 8) ? 2 : (Q >= 4) ? 4 : (Q >= 2) ? 8 : 16 };
- CRYPTOPP_ALIGN_DATA(8) T m_array[S+PAD];
- #else
- // CRYPTOPP_BOOL_ALIGN16 is 0. If we are here then the user
- // probably compiled with CRYPTOPP_DISABLE_ASM. Normally we
- // would use the natural alignment of T. The problem we are
- // having is, some toolchains are changing the boundary for
- // 64-bit arrays. 64-bit elements require 8-byte alignment,
- // but the toolchain is laying the array out on a 4 byte
- // boundary. See GH #992 for mystery alignment,
- // https://github.com/weidai11/cryptopp/issues/992
- T* GetAlignedArray() {return m_array;}
- CRYPTOPP_ALIGN_DATA(8) T m_array[S];
- #endif
- A m_fallbackAllocator;
- bool m_allocated;
- };
- /// \brief Static secure memory block with cleanup
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. The class can grow its memory
- /// block at runtime if a suitable allocator is available. If size
- /// grows beyond S and a suitable allocator is available, then the
- /// statically allocated array is obsoleted.
- /// \note This allocator can't be used with standard collections because
- /// they require that all objects of the same allocator type are equivalent.
- template <class T, size_t S, class A>
- class FixedSizeAllocatorWithCleanup<T, S, A, false> : public AllocatorBase<T>
- {
- public:
- CRYPTOPP_INHERIT_ALLOCATOR_TYPES(T)
- /// \brief Constructs a FixedSizeAllocatorWithCleanup
- FixedSizeAllocatorWithCleanup() : m_allocated(false) {}
- /// \brief Allocates a block of memory
- /// \param size the count elements in the memory block
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-based
- /// allocation at compile time. If size is less than or equal to
- /// <tt>S</tt>, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \sa reallocate(), SecBlockWithHint
- pointer allocate(size_type size)
- {
- CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));
- if (size <= S && !m_allocated)
- {
- m_allocated = true;
- return GetAlignedArray();
- }
- else
- return m_fallbackAllocator.allocate(size);
- }
- /// \brief Allocates a block of memory
- /// \param size the count elements in the memory block
- /// \param hint an unused hint
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. If size is less than or equal to
- /// S, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \sa reallocate(), SecBlockWithHint
- pointer allocate(size_type size, const void *hint)
- {
- if (size <= S && !m_allocated)
- {
- m_allocated = true;
- return GetAlignedArray();
- }
- else
- return m_fallbackAllocator.allocate(size, hint);
- }
- /// \brief Deallocates a block of memory
- /// \param ptr a pointer to the memory block to deallocate
- /// \param size the count elements in the memory block
- /// \details The memory block is wiped or zeroized before deallocation.
- /// If the statically allocated memory block is active, then no
- /// additional actions are taken after the wipe.
- /// \details If a dynamic memory block is active, then the pointer and
- /// size are passed to the allocator for deallocation.
- void deallocate(void *ptr, size_type size)
- {
- // Avoid assert on pointer in deallocate. SecBlock regularly uses NULL
- // pointers rather returning non-NULL 0-sized pointers.
- if (ptr == GetAlignedArray())
- {
- // If the m_allocated assert fires then
- // something overwrote the flag.
- CRYPTOPP_ASSERT(size <= S);
- CRYPTOPP_ASSERT(m_allocated);
- m_allocated = false;
- SecureWipeArray((pointer)ptr, size);
- }
- else
- {
- if (ptr)
- m_fallbackAllocator.deallocate(ptr, size);
- m_allocated = false;
- }
- }
- /// \brief Reallocates a block of memory
- /// \param oldPtr the previous allocation
- /// \param oldSize the size of the previous allocation
- /// \param newSize the new, requested size
- /// \param preserve flag that indicates if the old allocation should
- /// be preserved
- /// \return pointer to the new memory block
- /// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
- /// based allocation at compile time. If size is less than or equal to
- /// S, then a pointer to the static array is returned.
- /// \details The class can grow its memory block at runtime if a suitable
- /// allocator is available. If size grows beyond S and a suitable
- /// allocator is available, then the statically allocated array is
- /// obsoleted. If a suitable allocator is not available, as with a
- /// NullAllocator, then the function returns NULL and a runtime error
- /// eventually occurs.
- /// \note size is the count of elements, and not the number of bytes.
- /// \sa reallocate(), SecBlockWithHint
- pointer reallocate(pointer oldPtr, size_type oldSize, size_type newSize, bool preserve)
- {
- if (oldPtr == GetAlignedArray() && newSize <= S)
- {
- CRYPTOPP_ASSERT(oldSize <= S);
- if (oldSize > newSize)
- SecureWipeArray(oldPtr+newSize, oldSize-newSize);
- return oldPtr;
- }
- pointer newPtr = allocate(newSize, NULLPTR);
- if (preserve && newSize)
- {
- const size_type copySize = STDMIN(oldSize, newSize);
- if (newPtr && oldPtr) // GCC analyzer warning
- memcpy_s(newPtr, sizeof(T)*newSize, oldPtr, sizeof(T)*copySize);
- }
- deallocate(oldPtr, oldSize);
- return newPtr;
- }
- CRYPTOPP_CONSTEXPR size_type max_size() const
- {
- return STDMAX(m_fallbackAllocator.max_size(), S);
- }
- private:
- // T_Align16 is false. Normally we would use the natural
- // alignment of T. The problem we are having is, some toolchains
- // are changing the boundary for 64-bit arrays. 64-bit elements
- // require 8-byte alignment, but the toolchain is laying the array
- // out on a 4 byte boundary. See GH #992 for mystery alignment,
- // https://github.com/weidai11/cryptopp/issues/992
- T* GetAlignedArray() {return m_array;}
- CRYPTOPP_ALIGN_DATA(8) T m_array[S];
- A m_fallbackAllocator;
- bool m_allocated;
- };
- /// \brief Secure memory block with allocator and cleanup
- /// \tparam T a class or type
- /// \tparam A AllocatorWithCleanup derived class for allocation and cleanup
- /// \sa <A HREF="https://www.cryptopp.com/wiki/SecBlock">SecBlock</A>
- /// on the Crypto++ wiki.
- /// \since Crypto++ 2.0
- template <class T, class A = AllocatorWithCleanup<T> >
- class SecBlock
- {
- public:
- typedef typename A::value_type value_type;
- typedef typename A::pointer iterator;
- typedef typename A::const_pointer const_iterator;
- typedef typename A::size_type size_type;
- /// \brief Returns the maximum number of elements the block can hold
- /// \details <tt>ELEMS_MAX</tt> is the maximum number of elements the
- /// <tt>SecBlock</tt> can hold. The value of <tt>ELEMS_MAX</tt> is
- /// <tt>SIZE_MAX/sizeof(T)</tt>. <tt>std::numeric_limits</tt> was avoided
- /// due to lack of <tt>constexpr</tt>-ness in C++03 and below.
- /// \note In C++03 and below <tt>ELEMS_MAX</tt> is a static data member of type
- /// <tt>size_type</tt>. In C++11 and above <tt>ELEMS_MAX</tt> is an <tt>enum</tt>
- /// inheriting from <tt>size_type</tt>. In both cases <tt>ELEMS_MAX</tt> can be
- /// used before objects are fully constructed, and it does not suffer the
- /// limitations of class methods like <tt>max_size</tt>.
- /// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
- /// \since Crypto++ 6.0
- #if defined(CRYPTOPP_DOXYGEN_PROCESSING)
- static const size_type ELEMS_MAX = ...;
- #elif defined(_MSC_VER) && (_MSC_VER <= 1400)
- static const size_type ELEMS_MAX = (~(size_type)0)/sizeof(T);
- #elif defined(CRYPTOPP_CXX11_STRONG_ENUM)
- enum : size_type {ELEMS_MAX = A::ELEMS_MAX};
- #else
- static const size_type ELEMS_MAX = SIZE_MAX/sizeof(T);
- #endif
- /// \brief Construct a SecBlock with space for size elements.
- /// \param size the size of the allocation, in elements
- /// \throw std::bad_alloc
- /// \details The elements are not initialized.
- /// \since Crypto++ 2.0
- /// \note size is the count of elements, and not the number of bytes
- explicit SecBlock(size_type size=0)
- : m_mark(ELEMS_MAX), m_size(size), m_ptr(m_alloc.allocate(size, NULLPTR)) { }
- /// \brief Copy construct a SecBlock from another SecBlock
- /// \param t the other SecBlock
- /// \throw std::bad_alloc
- /// \since Crypto++ 2.0
- SecBlock(const SecBlock<T, A> &t)
- : m_mark(t.m_mark), m_size(t.m_size), m_ptr(m_alloc.allocate(t.m_size, NULLPTR)) {
- CRYPTOPP_ASSERT((!t.m_ptr && !m_size) || (t.m_ptr && m_size));
- if (m_ptr && t.m_ptr)
- memcpy_s(m_ptr, m_size*sizeof(T), t.m_ptr, t.m_size*sizeof(T));
- }
- /// \brief Construct a SecBlock from an array of elements.
- /// \param ptr a pointer to an array of T
- /// \param len the number of elements in the memory block
- /// \throw std::bad_alloc
- /// \details If <tt>ptr!=NULL</tt> and <tt>len!=0</tt>, then the block is initialized from the pointer
- /// <tt>ptr</tt>. If <tt>ptr==NULL</tt> and <tt>len!=0</tt>, then the block is initialized to 0.
- /// Otherwise, the block is empty and not initialized.
- /// \since Crypto++ 2.0
- /// \note size is the count of elements, and not the number of bytes
- SecBlock(const T *ptr, size_type len)
- : m_mark(ELEMS_MAX), m_size(len), m_ptr(m_alloc.allocate(len, NULLPTR)) {
- CRYPTOPP_ASSERT((!m_ptr && !m_size) || (m_ptr && m_size));
- if (m_ptr && ptr)
- memcpy_s(m_ptr, m_size*sizeof(T), ptr, len*sizeof(T));
- else if (m_ptr && m_size)
- memset(m_ptr, 0, m_size*sizeof(T));
- }
- ~SecBlock()
- {m_alloc.deallocate(m_ptr, STDMIN(m_size, m_mark));}
- #ifdef __BORLANDC__
- /// \brief Cast operator
- /// \return block pointer cast to non-const <tt>T *</tt>
- /// \since Crypto++ 2.0
- operator T *() const
- {return (T*)m_ptr;}
- #else
- /// \brief Cast operator
- /// \return block pointer cast to <tt>const void *</tt>
- /// \since Crypto++ 2.0
- operator const void *() const
- {return m_ptr;}
- /// \brief Cast operator
- /// \return block pointer cast to non-const <tt>void *</tt>
- /// \since Crypto++ 2.0
- operator void *()
- {return m_ptr;}
- /// \brief Cast operator
- /// \return block pointer cast to <tt>const T *</tt>
- /// \since Crypto++ 2.0
- operator const T *() const
- {return m_ptr;}
- /// \brief Cast operator
- /// \return block pointer cast to non-const <tt>T *</tt>
- /// \since Crypto++ 2.0
- operator T *()
- {return m_ptr;}
- #endif
- /// \brief Provides an iterator pointing to the first element in the memory block
- /// \return iterator pointing to the first element in the memory block
- /// \since Crypto++ 2.0
- iterator begin()
- {return m_ptr;}
- /// \brief Provides a constant iterator pointing to the first element in the memory block
- /// \return constant iterator pointing to the first element in the memory block
- /// \since Crypto++ 2.0
- const_iterator begin() const
- {return m_ptr;}
- /// \brief Provides an iterator pointing beyond the last element in the memory block
- /// \return iterator pointing beyond the last element in the memory block
- /// \since Crypto++ 2.0
- iterator end()
- {return m_ptr+m_size;}
- /// \brief Provides a constant iterator pointing beyond the last element in the memory block
- /// \return constant iterator pointing beyond the last element in the memory block
- /// \since Crypto++ 2.0
- const_iterator end() const
- {return m_ptr+m_size;}
- /// \brief Provides a pointer to the first element in the memory block
- /// \return pointer to the first element in the memory block
- /// \since Crypto++ 2.0
- typename A::pointer data() {return m_ptr;}
- /// \brief Provides a pointer to the first element in the memory block
- /// \return constant pointer to the first element in the memory block
- /// \since Crypto++ 2.0
- typename A::const_pointer data() const {return m_ptr;}
- /// \brief Provides the count of elements in the SecBlock
- /// \return number of elements in the memory block
- /// \note the return value is the count of elements, and not the number of bytes
- /// \since Crypto++ 2.0
- size_type size() const {return m_size;}
- /// \brief Determines if the SecBlock is empty
- /// \return true if number of elements in the memory block is 0, false otherwise
- /// \since Crypto++ 2.0
- bool empty() const {return m_size == 0;}
- /// \brief Provides a byte pointer to the first element in the memory block
- /// \return byte pointer to the first element in the memory block
- /// \since Crypto++ 2.0
- byte * BytePtr() {return (byte *)m_ptr;}
- /// \brief Return a byte pointer to the first element in the memory block
- /// \return constant byte pointer to the first element in the memory block
- /// \since Crypto++ 2.0
- const byte * BytePtr() const {return (const byte *)m_ptr;}
- /// \brief Provides the number of bytes in the SecBlock
- /// \return the number of bytes in the memory block
- /// \note the return value is the number of bytes, and not count of elements.
- /// \since Crypto++ 2.0
- size_type SizeInBytes() const {return m_size*sizeof(T);}
- /// \brief Set contents and size from an array
- /// \param ptr a pointer to an array of T
- /// \param len the number of elements in the memory block
- /// \details The array pointed to by <tt>ptr</tt> must be distinct
- /// from this SecBlock because Assign() calls New() and then memcpy().
- /// The call to New() will invalidate all pointers and iterators, like
- /// the pointer returned from data().
- /// \details If the memory block is reduced in size, then the reclaimed
- /// memory is set to 0. If an assignment occurs, then Assign() resets
- /// the element count after the previous block is zeroized.
- /// \since Crypto++ 2.0
- void Assign(const T *ptr, size_type len)
- {
- New(len);
- if (m_ptr && ptr) // GCC analyzer warning
- memcpy_s(m_ptr, m_size*sizeof(T), ptr, len*sizeof(T));
- m_mark = ELEMS_MAX;
- }
- /// \brief Set contents from a value
- /// \param count the number of values to copy
- /// \param value the value, repeated count times
- /// \details If the memory block is reduced in size, then the reclaimed
- /// memory is set to 0. If an assignment occurs, then Assign() resets
- /// the element count after the previous block is zeroized.
- /// \since Crypto++ 6.0
- void Assign(size_type count, T value)
- {
- New(count);
- for (size_t i=0; i<count; ++i)
- m_ptr[i] = value;
- m_mark = ELEMS_MAX;
- }
- /// \brief Copy contents from another SecBlock
- /// \param t the other SecBlock
- /// \details Assign checks for self assignment.
- /// \details If the memory block is reduced in size, then the reclaimed
- /// memory is set to 0. If an assignment occurs, then Assign() resets
- /// the element count after the previous block is zeroized.
- /// \since Crypto++ 2.0
- void Assign(const SecBlock<T, A> &t)
- {
- if (this != &t)
- {
- New(t.m_size);
- if (m_ptr && t.m_ptr) // GCC analyzer warning
- memcpy_s(m_ptr, m_size*sizeof(T), t, t.m_size*sizeof(T));
- }
- m_mark = ELEMS_MAX;
- }
- /// \brief Append contents from an array
- /// \param ptr a pointer to an array of T
- /// \param len the number of elements in the memory block
- /// \throw InvalidArgument if resulting size would overflow
- /// \details The array pointed to by <tt>ptr</tt> must be distinct
- /// from this SecBlock because Append() calls Grow() and then memcpy().
- /// The call to Grow() will invalidate all pointers and iterators, like
- /// the pointer returned from data().
- /// \details Append() may be less efficient than a ByteQueue because
- /// Append() must Grow() the internal array and then copy elements.
- /// The ByteQueue can copy elements without growing.
- /// \sa ByteQueue
- /// \since Crypto++ 8.6
- void Append(const T *ptr, size_type len)
- {
- if (ELEMS_MAX - m_size < len)
- throw InvalidArgument("SecBlock: buffer overflow");
- const size_type oldSize = m_size;
- Grow(m_size+len);
- if (m_ptr && ptr) // GCC analyzer warning
- memcpy_s(m_ptr+oldSize, (m_size-oldSize)*sizeof(T), ptr, len*sizeof(T));
- m_mark = ELEMS_MAX;
- }
- /// \brief Append contents from another SecBlock
- /// \param t the other SecBlock
- /// \throw InvalidArgument if resulting size would overflow
- /// \details Internally, this SecBlock calls Grow() and then appends t.
- /// \details Append() may be less efficient than a ByteQueue because
- /// Append() must Grow() the internal array and then copy elements.
- /// The ByteQueue can copy elements without growing.
- /// \sa ByteQueue
- /// \since Crypto++ 8.6
- void Append(const SecBlock<T, A> &t)
- {
- if (ELEMS_MAX - m_size < t.m_size)
- throw InvalidArgument("SecBlock: buffer overflow");
- const size_type oldSize = m_size;
- if (this != &t) // s += t
- {
- Grow(m_size+t.m_size);
- if (m_ptr && t.m_ptr) // GCC analyzer warning
- memcpy_s(m_ptr+oldSize, (m_size-oldSize)*sizeof(T), t.m_ptr, t.m_size*sizeof(T));
- }
- else // t += t
- {
- Grow(m_size*2);
- if (m_ptr) // GCC analyzer warning
- memmove_s(m_ptr+oldSize, (m_size-oldSize)*sizeof(T), m_ptr, oldSize*sizeof(T));
- }
- m_mark = ELEMS_MAX;
- }
- /// \brief Append contents from a value
- /// \param count the number of values to copy
- /// \param value the value, repeated count times
- /// \throw InvalidArgument if resulting size would overflow
- /// \details Internally, this SecBlock calls Grow() and then appends value.
- /// \details Append() may be less efficient than a ByteQueue because
- /// Append() must Grow() the internal array and then copy elements.
- /// The ByteQueue can copy elements without growing.
- /// \sa ByteQueue
- /// \since Crypto++ 8.6
- void Append(size_type count, T value)
- {
- if (ELEMS_MAX - m_size < count)
- throw InvalidArgument("SecBlock: buffer overflow");
- const size_type oldSize = m_size;
- Grow(m_size+count);
- for (size_t i=oldSize; i<oldSize+count; ++i)
- m_ptr[i] = value;
- m_mark = ELEMS_MAX;
- }
- /// \brief Sets the number of elements to zeroize
- /// \param count the number of elements
- /// \details SetMark is a remediation for Issue 346/CVE-2016-9939 while
- /// preserving the streaming interface. The <tt>count</tt> controls the number of
- /// elements zeroized, which can be less than <tt>size</tt> or 0.
- /// \details An internal variable, <tt>m_mark</tt>, is initialized to the maximum number
- /// of elements. The maximum number of elements is <tt>ELEMS_MAX</tt>. Deallocation
- /// triggers a zeroization, and the number of elements zeroized is
- /// <tt>STDMIN(m_size, m_mark)</tt>. After zeroization, the memory is returned to the
- /// system.
- /// \details The ASN.1 decoder uses SetMark() to set the element count to 0
- /// before throwing an exception. In this case, the attacker provides a large
- /// BER encoded length (say 64MB) but only a small number of content octets
- /// (say 16). If the allocator zeroized all 64MB, then a transient DoS could
- /// occur as CPU cycles are spent zeroizing uninitialized memory.
- /// \details Generally speaking, any operation which changes the size of the SecBlock
- /// results in the mark being reset to <tt>ELEMS_MAX</tt>. In particular, if Assign(),
- /// New(), Grow(), CleanNew(), CleanGrow() are called, then the count is reset to
- /// <tt>ELEMS_MAX</tt>. The list is not exhaustive.
- /// \since Crypto++ 6.0
- /// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
- void SetMark(size_t count) {m_mark = count;}
- /// \brief Assign contents from another SecBlock
- /// \param t the other SecBlock
- /// \return reference to this SecBlock
- /// \details Internally, operator=() calls Assign().
- /// \details If the memory block is reduced in size, then the reclaimed
- /// memory is set to 0. If an assignment occurs, then Assign() resets
- /// the element count after the previous block is zeroized.
- /// \since Crypto++ 2.0
- SecBlock<T, A>& operator=(const SecBlock<T, A> &t)
- {
- // Assign guards for self-assignment
- Assign(t);
- return *this;
- }
- /// \brief Append contents from another SecBlock
- /// \param t the other SecBlock
- /// \return reference to this SecBlock
- /// \details Internally, operator+=() calls Append().
- /// \since Crypto++ 2.0
- SecBlock<T, A>& operator+=(const SecBlock<T, A> &t)
- {
- // Append guards for overflow
- Append(t);
- return *this;
- }
- /// \brief Construct a SecBlock from this and another SecBlock
- /// \param t the other SecBlock
- /// \return a newly constructed SecBlock that is a concatenation of this
- /// and t.
- /// \details Internally, a new SecBlock is created from this and a
- /// concatenation of t.
- /// \since Crypto++ 2.0
- SecBlock<T, A> operator+(const SecBlock<T, A> &t)
- {
- CRYPTOPP_ASSERT((!m_ptr && !m_size) || (m_ptr && m_size));
- CRYPTOPP_ASSERT((!t.m_ptr && !t.m_size) || (t.m_ptr && t.m_size));
- if(!t.m_size) return SecBlock(*this);
- SecBlock<T, A> result(m_size+t.m_size);
- if (m_size)
- memcpy_s(result.m_ptr, result.m_size*sizeof(T), m_ptr, m_size*sizeof(T));
- if (result.m_ptr && t.m_ptr) // GCC analyzer warning
- memcpy_s(result.m_ptr+m_size, (result.m_size-m_size)*sizeof(T), t.m_ptr, t.m_size*sizeof(T));
- return result;
- }
- /// \brief Bitwise compare two SecBlocks
- /// \param t the other SecBlock
- /// \return true if the size and bits are equal, false otherwise
- /// \details Uses a constant time compare if the arrays are equal size.
- /// The constant time compare is VerifyBufsEqual() found in
- /// <tt>misc.h</tt>.
- /// \sa operator!=()
- /// \since Crypto++ 2.0
- bool operator==(const SecBlock<T, A> &t) const
- {
- return m_size == t.m_size && VerifyBufsEqual(
- reinterpret_cast<const byte*>(m_ptr),
- reinterpret_cast<const byte*>(t.m_ptr), m_size*sizeof(T));
- }
- /// \brief Bitwise compare two SecBlocks
- /// \param t the other SecBlock
- /// \return true if the size and bits are equal, false otherwise
- /// \details Uses a constant time compare if the arrays are equal size.
- /// The constant time compare is VerifyBufsEqual() found in
- /// <tt>misc.h</tt>.
- /// \details Internally, operator!=() returns the inverse of operator==().
- /// \sa operator==()
- /// \since Crypto++ 2.0
- bool operator!=(const SecBlock<T, A> &t) const
- {
- return !operator==(t);
- }
- /// \brief Change size without preserving contents
- /// \param newSize the new size of the memory block
- /// \details Old content is not preserved. If the memory block is
- /// reduced in size, then the reclaimed content is set to 0. If the
- /// memory block grows in size, then the new memory is initialized
- /// to 0. New() resets the element count after the previous block
- /// is zeroized.
- /// \details Internally, this SecBlock calls reallocate().
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \since Crypto++ 2.0
- void New(size_type newSize)
- {
- m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, false);
- m_size = newSize;
- m_mark = ELEMS_MAX;
- }
- /// \brief Change size without preserving contents
- /// \param newSize the new size of the memory block
- /// \details Old content is not preserved. If the memory block is
- /// reduced in size, then the reclaimed content is set to 0. If the
- /// memory block grows in size, then the new memory is initialized
- /// to 0. CleanNew() resets the element count after the previous
- /// block is zeroized.
- /// \details Internally, this SecBlock calls New().
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \since Crypto++ 2.0
- void CleanNew(size_type newSize)
- {
- New(newSize);
- if (m_ptr) {memset_z(m_ptr, 0, m_size*sizeof(T));}
- m_mark = ELEMS_MAX;
- }
- /// \brief Change size and preserve contents
- /// \param newSize the new size of the memory block
- /// \details Old content is preserved. New content is not initialized.
- /// \details Internally, this SecBlock calls reallocate() when size must
- /// increase. If the size does not increase, then CleanGrow() does not
- /// take action. If the size must change, then use resize(). CleanGrow()
- /// resets the element count after the previous block is zeroized.
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \since Crypto++ 2.0
- void Grow(size_type newSize)
- {
- if (newSize > m_size)
- {
- m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
- m_size = newSize;
- }
- m_mark = ELEMS_MAX;
- }
- /// \brief Change size and preserve contents
- /// \param newSize the new size of the memory block
- /// \details Old content is preserved. New content is initialized to 0.
- /// \details Internally, this SecBlock calls reallocate() when size must
- /// increase. If the size does not increase, then CleanGrow() does not
- /// take action. If the size must change, then use resize(). CleanGrow()
- /// resets the element count after the previous block is zeroized.
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \since Crypto++ 2.0
- void CleanGrow(size_type newSize)
- {
- if (newSize > m_size)
- {
- m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
- memset_z(m_ptr+m_size, 0, (newSize-m_size)*sizeof(T));
- m_size = newSize;
- }
- m_mark = ELEMS_MAX;
- }
- /// \brief Change size and preserve contents
- /// \param newSize the new size of the memory block
- /// \details Old content is preserved. If the memory block grows in size, then
- /// new memory is not initialized. resize() resets the element count after
- /// the previous block is zeroized.
- /// \details Internally, this SecBlock calls reallocate().
- /// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
- /// \since Crypto++ 2.0
- void resize(size_type newSize)
- {
- m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
- m_size = newSize;
- m_mark = ELEMS_MAX;
- }
- /// \brief Swap contents with another SecBlock
- /// \param b the other SecBlock
- /// \details Internally, std::swap() is called on m_alloc, m_size and m_ptr.
- /// \since Crypto++ 2.0
- void swap(SecBlock<T, A> &b)
- {
- // Swap must occur on the allocator in case its FixedSize that spilled into the heap.
- std::swap(m_alloc, b.m_alloc);
- std::swap(m_mark, b.m_mark);
- std::swap(m_size, b.m_size);
- std::swap(m_ptr, b.m_ptr);
- }
- protected:
- A m_alloc;
- size_type m_mark, m_size;
- T *m_ptr;
- };
- #ifdef CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief \ref SecBlock "SecBlock<byte>" typedef.
- class SecByteBlock : public SecBlock<byte> {};
- /// \brief \ref SecBlock "SecBlock<word>" typedef.
- class SecWordBlock : public SecBlock<word> {};
- /// \brief SecBlock using \ref AllocatorWithCleanup "AllocatorWithCleanup<byte, true>" typedef
- class AlignedSecByteBlock : public SecBlock<byte, AllocatorWithCleanup<byte, true> > {};
- #else
- typedef SecBlock<byte> SecByteBlock;
- typedef SecBlock<word> SecWordBlock;
- typedef SecBlock<byte, AllocatorWithCleanup<byte, true> > AlignedSecByteBlock;
- #endif
- // No need for move semantics on derived class *if* the class does not add any
- // data members; see http://stackoverflow.com/q/31755703, and Rule of {0|3|5}.
- /// \brief Fixed size stack-based SecBlock
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \tparam A AllocatorBase derived class for allocation and cleanup
- template <class T, unsigned int S, class A = FixedSizeAllocatorWithCleanup<T, S> >
- class FixedSizeSecBlock : public SecBlock<T, A>
- {
- public:
- /// \brief Construct a FixedSizeSecBlock
- explicit FixedSizeSecBlock() : SecBlock<T, A>(S) {}
- };
- /// \brief Fixed size stack-based SecBlock with 16-byte alignment
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \tparam T_Align16 boolean that determines whether allocations should be
- /// aligned on a 16-byte boundary
- template <class T, unsigned int S, bool T_Align16 = true>
- class FixedSizeAlignedSecBlock : public FixedSizeSecBlock<T, S, FixedSizeAllocatorWithCleanup<T, S, NullAllocator<T>, T_Align16> >
- {
- };
- /// \brief Stack-based SecBlock that grows into the heap
- /// \tparam T class or type
- /// \tparam S fixed-size of the stack-based memory block, in elements
- /// \tparam A AllocatorBase derived class for allocation and cleanup
- template <class T, unsigned int S, class A = FixedSizeAllocatorWithCleanup<T, S, AllocatorWithCleanup<T> > >
- class SecBlockWithHint : public SecBlock<T, A>
- {
- public:
- /// construct a SecBlockWithHint with a count of elements
- explicit SecBlockWithHint(size_t size) : SecBlock<T, A>(size) {}
- };
- template<class T, bool A, class V, bool B>
- inline bool operator==(const CryptoPP::AllocatorWithCleanup<T, A>&, const CryptoPP::AllocatorWithCleanup<V, B>&) {return (true);}
- template<class T, bool A, class V, bool B>
- inline bool operator!=(const CryptoPP::AllocatorWithCleanup<T, A>&, const CryptoPP::AllocatorWithCleanup<V, B>&) {return (false);}
- NAMESPACE_END
- NAMESPACE_BEGIN(std)
- /// \brief Swap two SecBlocks
- /// \tparam T class or type
- /// \tparam A AllocatorBase derived class for allocation and cleanup
- /// \param a the first SecBlock
- /// \param b the second SecBlock
- template <class T, class A>
- inline void swap(CryptoPP::SecBlock<T, A> &a, CryptoPP::SecBlock<T, A> &b)
- {
- a.swap(b);
- }
- #if defined(_STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE) || (defined(_STLPORT_VERSION) && !defined(_STLP_MEMBER_TEMPLATE_CLASSES))
- // working for STLport 5.1.3 and MSVC 6 SP5
- template <class _Tp1, class _Tp2>
- inline CryptoPP::AllocatorWithCleanup<_Tp2>&
- __stl_alloc_rebind(CryptoPP::AllocatorWithCleanup<_Tp1>& __a, const _Tp2*)
- {
- return (CryptoPP::AllocatorWithCleanup<_Tp2>&)(__a);
- }
- #endif
- NAMESPACE_END
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #endif
|